Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings
Abstract
:1. Introduction
2. Methodology
2.1. LED Lighting Thermal Management System
2.2. Experimental System and Theoretical Method
2.3. Experimental Setup
3. Results and Discussion
3.1. Experimental Results
Title | 40 W LED | 60 W LED | 80 W LED | |||
---|---|---|---|---|---|---|
Internal Heat Gain (Qin) | Contribution Rate (Qin / PLED) | Internal Heat Gain (Qin) | Contribution Rate (Qin / PLED) | Internal Heat Gain (Qin) | Contribution Rate (Qin / PLED) | |
Baseline | 31.2 W | 78.1% | 46.9 W | 78.1% | 62.5 W | 78.1% |
LHEM System | 1.7 W | 4.3% | 3.0 W | 5.1% | 4.1 W | 5.1% |
3.2. Heating and Cooling Energy Savings in an Office Building
Title | Heat gain fraction | Period | ||
---|---|---|---|---|
Visible Light | Convection Heat | Heat Removal | ||
Baseline | 0.22 | 0.78 | - | for all period |
LHEM System | 0.22 | 0.05 | 0.73 | for cooling period |
0.22 | 0.78 | - | for heating period |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
heat generated by the LED, W | |
thermal resistance from LED to ambient surroundings, K/W | |
thermal resistance from junction to substrate, K/W | |
thermal resistance from substrate to base metal, K/W | |
thermal resistance from base metal to heat pipe, K/W | |
thermal resistance from heat pipe to heat sink, K/W | |
thermal resistance from heat sink to ambient surroundings, K/W | |
junction temperature of the LED, K | |
internal air temperature, K | |
ambient temperature, K | |
air temperature at the front of heat sink, K | |
air temperature at the rear of heat sink, K | |
number of LEDs | |
number of heat pipes | |
heat lost from the internal test chamber to ambient surroundings, W | |
heat removed by the air flow, W | |
thermal transmittance of the envelopes, W/(m2K) | |
surface area of the test chamber, m2 | |
cross-sectional area of the air duct, m2 | |
air density, kg/m3 | |
specific heat of air, kJ/(kgK) | |
air velocity, m/s |
Appendix
Title | Input Parameter |
---|---|
Location | Daejeon, Republic of Korea (36° N, 127° E) |
Number of floors | 6 floors (B1F, 1f-5F) |
Net floor area | 6164.8 m2 |
Internal heat gains: Equipment | 15.5 W/m2 |
Lights | 8.0 W/m2 |
Occupancy | 120 W/person |
U-value of Envelopes: Exterior wall | 0.45 W/(m2K) |
Roof | 0.29 W/(m2K) |
Floor | 0.35 W/(m2K) |
Window | 2.60 W/(m2K) |
Ventilation rate | 0.51 L/(sm2) (flow per exterior surface area) |
Infiltration rate | 0.30 L/(sm2) (flow per exterior surface area) |
References
- Gutierrez-Escolar, A.; Castillo-Martinez, A.; Gomez-Pulido, J.M.; Gutierrez-Martinez, J.-M.; Stapic, Z.; Medina-Merodio, J.-A. A Study to Improve the Quality of Street Lighting in Spain. Energies 2015, 8, 976–994. [Google Scholar] [CrossRef]
- Han, J.-H.; Lim, Y.-C. Design of an LLC Resonant Converter for Driving Multiple LED Lights Using Current Balancing of Capacitor and Transformer. Energies 2015, 8, 2125–2144. [Google Scholar] [CrossRef]
- Weng, C.-J. Advanced thermal enhancement and management of LED packages. Int. Commun. Heat Mass Transf. 2009, 36, 245–248. [Google Scholar] [CrossRef]
- Yoon, Y.B.; Manandhar, R.; Lee, K.H. Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance. Energies 2014, 7, 5825–5846. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, J.; Jang, C.-Y.; Jeong, H. A sensor-less LED dimming system based on daylight harvesting with BIPV systems. Opt. Express 2014, 22, A132–A143. [Google Scholar] [CrossRef] [PubMed]
- Wermager, S.; Baur, S. Energy Analysis of a Student-Designed Solar House. Energies 2013, 6, 6373–6390. [Google Scholar] [CrossRef]
- Yung, K.C.; Liem, H.; Choy, H.S. Heat transfer analysis of a high-brightness LED array on PCB under different placement configurations. Int. Commun. Heat Mass Transf. 2014, 53, 79–86. [Google Scholar] [CrossRef]
- Yoon, Y.B.; Jeong, W.R.; Lee, K.H. Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods. Energies 2014, 7, 2362–2376. [Google Scholar] [CrossRef]
- Djavid, M.; Liu, X.; Mi, Z. Improvement of the light extraction efficiency of GaN-based LEDs using rolled-up nanotube arrays. Opt. Express 2014, 22, A1680–A1686. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Huo, Z.; Zhang, Y.; Zheng, H.; Chen, Y.; Yang, J.; Hu, Q.; Duan, R.; Wang, J.; Zeng, Y.; et al. Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO2 photonic crystals. Opt. Express 2014, 22, A1093–A1100. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-C. Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles. Microelectron. J. 2014, 45, 416–423. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, B.; Ma, T.; Sun, X. Thermal management for high-power photonic crystal light emitting diodes. Microelectron. Reliab. 2014, 54, 124–130. [Google Scholar] [CrossRef]
- Yung, K.C.; Liem, H.; Choy, H.S.; Cai, Z.X. Thermal investigation of a high brightness LED array package assemply for various placement algorithms. Appl. Therm. Eng. 2014, 63, 105–118. [Google Scholar] [CrossRef]
- Jang, D.; Kim, D.R.; Lee, K.-S. Correlation of cross-cut cylindrical heat sink to improve the orientation effect of LED light bulbs. Int. Commun. Heat Mass Transf. 2015, 84, 821–826. [Google Scholar] [CrossRef]
- Li, J.; Lin, F.; Wang, D.; Tian, W. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips. Appl. Therm. Eng. 2013, 56, 18–26. [Google Scholar] [CrossRef]
- Lu, X.; Hua, T.-C.; Wang, Y. Thermal analysis of high power LED package with heat pipe heat sink. Microelectron. J. 2011, 42, 1257–1262. [Google Scholar] [CrossRef]
- Shen, Q.; Sun, D.; Xu, Y.; Jin, T.; Zhao, X. Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs. Int. Commun. Heat Mass Transf. 2014, 75, 462–469. [Google Scholar] [CrossRef]
- Lam, J.C.; Tsang, C.L.; Yang, L. Impacts of lighting density on heating and cooling loads in different climates in China. Energy Convers. Manag. 2006, 47, 1942–1953. [Google Scholar] [CrossRef]
- Sezgen, O.; Koomey, J.G. Interactions between lighting and space conditioning energy use in US commercial buildings. Energy 2000, 25, 793–805. [Google Scholar] [CrossRef]
- Sezgen, O.; Koomey, J.G. Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renew. Sustain. Energy Rev. 2015, 41, 1–13. [Google Scholar]
- Ahn, B.-L.; Jang, C.-Y.; Leigh, S.-B.; Jeong, H. Analysis of the Effect of Artificial Lighting on Heating and Cooling Energy in Commercial Buildings. Energy Procedia 2014, 61, 928–932. [Google Scholar] [CrossRef]
- Ahn, B.-L.; Jang, C.-Y.; Leigh, S.-B.; Yoo, S.; Jeong, H. Effect of LED lighting on the cooling heating loads in office buildings. Appl. Energy 2014, 113, 1484–1489. [Google Scholar] [CrossRef]
- Minseok, H.; Samuel, G. Development of a thermal resistance model for chip-on-board packaging of high power LED arrays. Microelectron. Reliab. 2012, 52, 836–844. [Google Scholar]
- Wang, J.-C. Superposition method to investigate the thermal performance of heat sink with embedded heat pipes. Int. Commun. Heat Mass Transf. 2009, 36, 686–692. [Google Scholar] [CrossRef]
- Wu, H.-H.; Lin, K.-H.; Lin, S.-T. A study on the heat dissipation of high power multi-chip COB LEDs. Microelectron. J. 2012, 43, 280–287. [Google Scholar] [CrossRef]
- He, F.; Chen, Q.; Liu, J.; Liu, J. Thermal analysis of COB array soldered on heat sink. Int. Commun. Heat Mass Transf. 2014, 59, 55–60. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Inc. 2013 ASHRAE Handbook––Fundamentals, Ventilation and Infiltration, American Society of Heating; ASHRAE Inc.: Atlanta, GA, USA, 2013; pp. 16.27–16.28. [Google Scholar]
- Crawley, D.; Lawrie, L.; Winkelmann, F.; Buhl, W.F.; Huang, H.J.; Pedersen, C. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Inc. ASHRAE Standard 90.1 (2004),Energy Standard for Buildings except Low Rise Residential Buildings; ASHRAE Inc.: Atlanta, GA, USA, 2010. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, B.-L.; Park, J.-W.; Yoo, S.; Kim, J.; Leigh, S.-B.; Jang, C.-Y. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings. Energies 2015, 8, 6658-6671. https://doi.org/10.3390/en8076658
Ahn B-L, Park J-W, Yoo S, Kim J, Leigh S-B, Jang C-Y. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings. Energies. 2015; 8(7):6658-6671. https://doi.org/10.3390/en8076658
Chicago/Turabian StyleAhn, Byung-Lip, Ji-Woo Park, Seunghwan Yoo, Jonghun Kim, Seung-Bok Leigh, and Cheol-Yong Jang. 2015. "Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings" Energies 8, no. 7: 6658-6671. https://doi.org/10.3390/en8076658
APA StyleAhn, B.-L., Park, J.-W., Yoo, S., Kim, J., Leigh, S.-B., & Jang, C.-Y. (2015). Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings. Energies, 8(7), 6658-6671. https://doi.org/10.3390/en8076658