Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth
Abstract
:1. Introduction
2. Method and Data
2.1. Method
2.2. Data Sources and Processing
Sectors | Direct Carbon Intensity | Indirect Carbon Intensity | Total Carbon Intensity | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1997 | 2002 | 2007 | 2012 | 1997 | 2002 | 2007 | 2012 | 1997 | 2002 | 2007 | 2012 | ||||
1-AGR | Agriculture | 0.3 | 0.4 | 0.4 | 0.3 | 1.2 | 2.0 | 1.4 | 1.4 | 1.5 | 2.4 | 1.8 | 1.7 | ||
2-MWC | Mining and washing of coal | 8.2 | 4.1 | 2.0 | 0.2 | 1.4 | 7.5 | 5.6 | 4.1 | 9.6 | 11.6 | 7.6 | 4.3 | ||
3-EPN | Extraction of petroleum and natural gas | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | ||
4-MPM | Mining and processing of metal ores | 1.4 | 1.6 | 1.7 | 1.1 | 2.8 | 7.2 | 6.5 | 5.5 | 4.2 | 8.8 | 8.2 | 6.6 | ||
5-MPN | Mining and processing of nonmetal ores | 1.1 | 1.1 | 3.8 | 1.6 | 3.5 | 6.5 | 6.8 | 5.5 | 4.6 | 7.6 | 10.6 | 7.1 | ||
6-MFT | Processing and manufacture of food and tobacco | 0.2 | 0.1 | 0.2 | 0.1 | 0.7 | 1.8 | 1.0 | 0.8 | 0.9 | 1.9 | 1.2 | 0.9 | ||
7-MOT | Manufacture of textiles | 0.4 | 0.5 | 2.7 | 1.0 | 2.1 | 4.4 | 3.6 | 2.3 | 2.5 | 4.9 | 6.3 | 3.3 | ||
8-MCL | Manufacture of clothes, leather and related products | 0.3 | 0.3 | 0.5 | 0.1 | 2.3 | 3.5 | 3.1 | 1.7 | 2.6 | 3.8 | 3.6 | 1.8 | ||
9-MWF | Manufacture of wood products and furniture | 0.2 | 0.5 | 0.6 | 0.1 | 4.5 | 5.0 | 3.0 | 1.3 | 4.7 | 5.5 | 3.6 | 1.4 | ||
10-PMP | Paper making, printing and articles manufacture | 0.5 | 0.4 | 0.8 | 0.5 | 3.5 | 4.0 | 2.1 | 2.0 | 4.0 | 4.4 | 2.9 | 2.5 | ||
11-PPC | Petroleum processing and coking | 6.3 | 10.6 | 1.5 | 1.2 | 4.5 | 7.4 | 3.6 | 2.8 | 10.8 | 18.0 | 5.1 | 4.0 | ||
12-CHE | Chemistry | 3.9 | 4.0 | 1.9 | 1.9 | 5.9 | 6.7 | 5.9 | 3.7 | 9.8 | 10.7 | 7.8 | 5.6 | ||
13-MNM | Manufacture of non-metallic mineral products | 6.0 | 4.6 | 15.5 | 7.0 | 5.2 | 6.9 | 7.7 | 5.3 | 11.2 | 11.5 | 23.2 | 12.3 | ||
14-SPM | Smelting and pressing of metals | 5.8 | 5.2 | 2.8 | 2.8 | 6.9 | 8.1 | 4.2 | 3.6 | 12.7 | 13.3 | 7.0 | 6.4 | ||
15-MMP | Manufacture of metal products | 0.2 | 0.3 | 0.2 | 0.1 | 8.0 | 8.5 | 4.3 | 3.3 | 8.2 | 8.8 | 4.5 | 3.4 | ||
16-MGS | Manufacture of general and special purpose machinery | 0.3 | 0.3 | 0.2 | 0.1 | 3.8 | 6.8 | 3.5 | 3.2 | 4.1 | 7.1 | 3.7 | 3.3 | ||
17-MTE | Manufacture of transportation equipment | 0.3 | 0.2 | 0.1 | 0.2 | 4.1 | 5.9 | 2.7 | 2.6 | 4.4 | 6.1 | 2.8 | 2.8 | ||
18-MEM | Manufacture of electrical machinery and equipment | 0.0 | 0.1 | 0.0 | 0.0 | 5.9 | 6.7 | 4.6 | 3.8 | 5.9 | 6.8 | 4.6 | 3.8 | ||
19-MCE | Manufacture of communication and electronic equipment | 0.9 | 0.5 | 0.0 | 0.0 | 3.8 | 4.5 | 2.5 | 1.4 | 4.7 | 5.0 | 2.5 | 1.4 | ||
20-IMC | Manufacture of measuring instruments and machinery for cultural activity and office work | 0.0 | 0.0 | 0.0 | 0.0 | 4.4 | 5.6 | 2.8 | 1.9 | 4.4 | 5.6 | 2.8 | 1.9 | ||
21-MAO | Manufacture of artwork and other manufacturing | 0.0 | 0.1 | 0.3 | 0.7 | 4.2 | 6.1 | 3.2 | 2.4 | 4.2 | 6.2 | 3.5 | 3.1 | ||
22-RDW | Recycling and disposal of waste | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | ||
23-PSE | Production and supply of electric and heat power | 30.2 | 11.1 | 12.9 | 6.8 | 3.9 | 5.2 | 8.7 | 4.5 | 34.1 | 16.3 | 21.6 | 11.3 | ||
24-PSG | Production and supply of gas | 5.3 | 2.8 | 4.6 | 0.1 | 5.5 | 7.0 | 3.7 | 1.4 | 10.8 | 9.8 | 8.3 | 1.5 | ||
25-PSW | Production and supply of water | 0.1 | 0.0 | 0.0 | 0.0 | 2.9 | 5.1 | 1.6 | 2.5 | 3.0 | 5.1 | 1.6 | 2.5 | ||
26-CON | Construction | 0.1 | 0.1 | 0.1 | 0.1 | 5.4 | 7.2 | 5.8 | 4.5 | 5.5 | 7.3 | 5.9 | 4.6 | ||
27-TSP | Transport, storage and post | 1.5 | 3.3 | 3.7 | 4.1 | 2.8 | 6.3 | 2.3 | 2.2 | 4.3 | 9.6 | 6.0 | 6.3 | ||
28-WRH | Wholesale, retail trade and hotel, restaurants | 0.1 | 0.1 | 0.1 | 0.2 | 1.6 | 2.1 | 1.4 | 1.2 | 1.7 | 2.2 | 1.5 | 1.4 | ||
29-OSE | Other services | 0.1 | 0.1 | 0.0 | 0.1 | 1.5 | 2.7 | 1.7 | 1.5 | 1.6 | 2.8 | 1.7 | 1.6 |
3. Results and Discussion
3.1. Overall Trend of CO2 Emission Variations in Yunnan from 1997–2012
3.2. Drivers from Decomposition Analysis
Year | Fraction of Investment in GDP | Fraction of Consumption in GDP | Fraction of Exports in GDP |
---|---|---|---|
1997 | 42.8 | 59.8 | 33.3 |
2002 | 39.8 | 68.4 | 38.1 |
2007 | 44.3 | 61.9 | 63.8 |
2012 | 83.2 | 61.2 | 51.5 |
3.3. Drivers from a Final Demand Perspective
3.4. Policy Recommendations for Further Mitigating CO2 Emissions in Yunnan
3.4.1. Policy Recommendations from a Production Perspective
Promote the Development and Application of Clean Energy
Further Improve the Energy Efficiency in Energy-Intensive Sectors
Adjust the Industrial Structure According to the Total Carbon Intensity of Sectors and Local Advantageous Resources
3.4.2. Policy Recommendations from a Final Demand Perspective
Reduce the Dependence of Economic Growth on Investments and Exports and Encourage a Consumption-Based Economic Growth
Optimize the Life-Cycle Supply Chains for Final Demand Products
Adjust the Final Demand Structure
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.P.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; van Vuuren, D.P.; et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y. Annual Review of Low-Carbon Development in China (2013); Social Science Academic Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Hennig, T.; Wang, W.L.; Feng, Y.; Ou, X.K.; He, D.M. Review of Yunnan’s hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences. Renew. Sustain. Energy Rev. 2013, 27, 585–595. [Google Scholar] [CrossRef]
- Statistical Bureau of Yunnan Province (SBYP). Yunnan Statistical Yearbook 1998–2013; China Statistics Press: Beijing, China, 2013.
- National Bureau of Statistics Survey Office in Yunnan (NBSSOY). Yunnan Survey Yearbook 2014; China Statistics Press: Beijing, China, 2014.
- Guan, D.B.; Klasen, S.; Hubacek, K.; Feng, K.S.; Liu, Z.; He, K.B.; Geng, Y.; Zhang, Q. Determinants of stagnating carbon intensity in China. Nat. Clim. Chang. 2014, 4, 1017–1023. [Google Scholar] [CrossRef]
- Tollefson, J. US-China climate deal raises hopes for Lima talks. Nature 2014, 515, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Yunnan Development and Reform Commission (YDRC). Low-carbon development plan in Yunnan (2011–2020). 2011. Available online: http://www.yn.gov.cn/yn_zwlanmu/yn_srmzfgb/201108/t20110804_537.html (accessed on 13 November 2014). (In Chinese) [Google Scholar]
- Minx, J.C.; Baiocchi, G.; Peters, G.P.; Weber, C.L.; Guan, D.B.; Hubacek, K. A “Carbonizing Dragon”: China’s fast growing CO2 emissions revisited. Environ. Sci. Technol. 2011, 45, 9144–9153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Zhao, H.Y.; Li, L.Y.; Liu, Z.; Liang, S. Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy 2013, 58, 312–318. [Google Scholar] [CrossRef]
- Geng, Y.; Zhao, H.Y.; Liu, Z.; Xue, B.; Fujita, T.; Xi, F.M. Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning. Energy Policy 2013, 60, 820–826. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T.Z. What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy 2011, 39, 7078–7083. [Google Scholar] [CrossRef]
- Guan, D.B.; Barker, T. Low-carbon development in the least developed region: a case study of Guangyuan, Sichuan province, southwest China. Nat. Hazards 2012, 62, 243–254. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhang, Y.Y.; Yi, H.H.; Ma, J.Y.; Pu, L. Development a detailed inventory framework for estimating major pollutants emissions inventory for Yunnan Province, China. Atmos. Environ. 2012, 57, 116–125. [Google Scholar] [CrossRef]
- Hoekstra, R.; van der Bergh, J. Comparing structural and index decomposition analysis. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.F.; Chen, B. Decomposition analysis of energy-related industrial CO2 emissions in China. Energies 2013, 6, 2319–2337. [Google Scholar] [CrossRef]
- Lu, J.C.; Fan, W.G.; Meng, M. Empirical research on China’s carbon productivity decomposition model based on multi-dimensional factors. Energies 2015, 8, 3093–3117. [Google Scholar] [CrossRef]
- Pan, L.Y.; Guo, Z.; Liu, P.; Ma, L.W.; Li, Z. Comparison and analysis of macro energy scenarios in China and a decomposition-based approach to quantifying the impacts of economic and social development. Energies 2013, 6, 3444–3465. [Google Scholar] [CrossRef]
- Peters, G.P.; Weber, C.L.; Guan, D.B.; Hubacek, K. China’s growing CO2 emissions-A race between increasing consumption and efficiency gains. Environ. Sci. Technol. 2007, 41, 5939–5944. [Google Scholar] [CrossRef] [PubMed]
- Leontief, W. Input-Output Economics; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Guan, D.B.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change 2008, 18, 626–634. [Google Scholar] [CrossRef]
- Tian, X.; Chang, M.; Tanikawa, H.; Shi, F.; Imura, H. Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy 2013, 53, 279–286. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B. Structural decomposition techniques: sense and sensitivity. Econ. Syst. Res. 1998, 10, 307–324. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Attribution of changes in the generalized Fisher index with application to embodied emission studies. Energy 2014, 69, 778–786. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Multiplicative decomposition of aggregate carbon intensity change using input–output analysis. Appl. Energy 2015, 154, 13–20. [Google Scholar] [CrossRef]
- De Boer, P. Additive structural decomposition analysis and index number theory: an empirical application of the Montgomery decomposition. Econ. Syst. Res. 2008, 20, 97–109. [Google Scholar] [CrossRef]
- Chai, J.; Guo, J.E.; Wang, S.Y.; Lai, K.K. Why does energy intensity fluctuate in China? Energy Policy 2009, 37, 5717–5731. [Google Scholar] [CrossRef]
- Wachsmann, U.; Wood, R.; Lenzen, M.; Schaeffer, R. Structural decomposition of energy use in Brazil from 1970 to 1996. Appl. Energy 2009, 86, 578–587. [Google Scholar] [CrossRef]
- Wood, R. Structural decomposition analysis of Australia’s greenhouse gas emissions. Energy Policy 2009, 37, 4943–4948. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC). China Greenhouse Gas Inventory Study 2005; China Environmental Press: Beijing, China, 2014. (In Chinese)
- Su, B.; Ang, B.W.; Low, M. Input-output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports. Ecol. Econ. 2013, 88, 119–125. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Input-output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports. Energy Policy. 2013, 56, 83–87. [Google Scholar] [CrossRef]
- Hubacek, K.; Feng, K.S.; Chen, B. Changing lifestyles towards a low carbon economy: an IPAT analysis for China. Energies 2012, 5, 22–31. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 739–742. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS). China Energy Statistical Yearbook 1998–2013; China Statistics Press: Beijing, China, 2013.
- Statistical Bureau of Yunnan Province (SBYP). Yunnan Energy Statistical Yearbook 2000–2013; Yunnan Science and Technology Press: Kunming, China, 2013.
- Peters, G.P.; Weber, C.L.; Liu, J.R. Construction of Chinese Energy and Emissions Inventory; Norwegian University of Science and Technology: Trondheim, Norway, 2006. [Google Scholar]
- Guan, D.B.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Chang. 2012, 2, 672–675. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS). Classification of national economic industries (GB/T 4754–2011). 2011. Available online: http://www.stats.gov.cn/tjsj/tjbz/hyflbz/ (accessed on 13 November 2014) . (In Chinese) [Google Scholar]
- United Nations Department for Economic and Social Affairs Statistics Division (UNDESASD). Hand Book of Input-Output Table Compilation and Analysis; United Nations: New York, NY, USA, 1999. [Google Scholar]
- Su, B.; Huang, H.C.; Ang, B.W.; Zhou, P. Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation. Energy Econ. 2010, 32, 166–175. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: aggregation issues. Econ. Syst. Res. 2012, 24, 299–317. [Google Scholar] [CrossRef]
- Weber, C.L.; Peters, G.P.; Guan, D.B.; Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy. 2008, 36, 3572–3577. [Google Scholar] [CrossRef]
- People’s Government of Yunnan Province (PGYP). The Eleventh Five Year Plan for economic and social development in Yunnan province. 2006. Available online: http://xxgk.yn.gov.cn/bgt_Model1/newsview.aspx?id=130772 (accessed on 13 November 2014). (In Chinese) [Google Scholar]
- Yuan, C.Q.; Liu, S.F.; Xie, N.M. The impact on Chinese economic growth and energy consumption of the Global Financial Crisis: An input-output analysis. Energy 2010, 35, 1805–1812. [Google Scholar] [CrossRef]
- Eng, I. Agglomeration and the local state: The tobacco economy of Yunnan, China. Trans. Inst. Br. Geogr. 1999, 24, 315–329. [Google Scholar] [CrossRef]
- People’s Government of Yunnan Province (PGYP). The Tenth Five Year Plan for economic and social development in Yunnan province. 2001. Available online: http://www.bjpc.gov.cn/fzgh_1/guihua/10_5/gj_ws/200710/P020071024539269370799.pdf (accessed on 13 November 2014). (In Chinese) [Google Scholar]
- Wang, Y.; Zhu, Q.H.; Geng, Y. Trajectory and driving factors for GHG emissions in the Chinese cement industry. J. Clean. Prod. 2013, 53, 252–260. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Li, W.; Hu, Y. Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth. Energies 2016, 9, 23. https://doi.org/10.3390/en9010023
Deng M, Li W, Hu Y. Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth. Energies. 2016; 9(1):23. https://doi.org/10.3390/en9010023
Chicago/Turabian StyleDeng, Mingxiang, Wei Li, and Yan Hu. 2016. "Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth" Energies 9, no. 1: 23. https://doi.org/10.3390/en9010023
APA StyleDeng, M., Li, W., & Hu, Y. (2016). Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth. Energies, 9(1), 23. https://doi.org/10.3390/en9010023