Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009
Abstract
:1. Introduction
2. Experimental Section
2.1. Conversion of Existing Final Energy Data to Final Exergy Values (Step 1)
2.1.1. Collecting Energy Data
2.1.2. Conversion of Energy Data to Exergy Values
2.2. Allocation of Each Final Exergy Consumption to One Useful Exergy Category (Step 2)
- Heat: This category includes all heat used in the economy by processes and devices. It is subdivided in three types of use, based on temperature ranges of the hot reservoir [54]: (1) High temperature heat (HTH) (>600 °C) for most processes of heat-intensive industries such as iron, steel, cement, glass and oil refining industries [55]; (2) Medium temperature heat (MTH) (120–600 °C) for some processes of the metallurgical, chemical and energy industries [55], e.g., the digestion process of aluminum production; and (3) Low temperature heat (LTH) (<120 °C) for residential and industrial hot water, cooking and space heating and other low temperature industrial processes, e.g., pressing for paper production and canning for food preservation [55].
- Mechanical drive: This category consists of mechanical work, which consists of any conversion to drive and movement by a mechanical device regardless of the final exergy carrier. Examples of this category are energy uses through internal combustion engines, electric motors and motors of household appliances (including those of HVAC and refrigeration; which are included in this useful work category because available data corresponds to the electricity consumption of their motors rather than to their heat extraction output. Even though a cooling useful work category, in theory, is more adequate for these devices, the estimation of heat extraction output from the electricity consumption data is unreliable).
- Light: Includes the total lighting for industrial and residential use from any energy carrier. In modern/urban economies, most lighting services are produced by electricity. However, in developing/rural economies, lighting was also obtained from oil products, fat or “town gas”.
- Other electric uses: This category includes others uses for electricity not mentioned in the previous categories. According to Serrenho, Warr, Sousa, Ayres and Domingos [25], this category is divided into two subcategories: (1) Communication, electronic and electric devices and (2) electrochemical processes.
- Muscle work: Comprises useful exergy from ingested final gross exergy of food and feed by humans and animals, respectively.
2.2.1. Coal and Coal Products
2.2.2. Oil and Oil Products
2.2.3. Natural Gas
2.2.4. Combustible Renewables
2.2.5. Electricity
2.2.6. Food and Feed
2.2.7. Other Non-Conventional
2.3. Computation of Useful Exergy Values and Second-Law Final-to-Useful Efficiencies by Useful Exergy Category (Step 3)
2.3.1. Estimation of Second Law Efficiencies for each Useful Exergy Category
- a.
- Heat
- b.
- Mechanical Drive
- c.
- Light
- d.
- Other Electric Uses
- e.
- Muscle Work
2.3.2. Obtaining Useful Exergy Values and Aggregate Second-Law Final-to-Useful Efficiencies for Each Useful Exergy Category
2.4. Calculation of Aggregate Useful Exergy Variables (Step 4)
3. Results
3.1. Final Exergy Trends
3.2. Useful Exergy Trends
3.3. Final-to-Useful Efficiency
3.4. Useful and Final Exergy Trends
4. Discussion and Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
UE | Useful exergy |
UEAM | Useful exergy accounting methodology |
HTH | High temperature heat |
MTH | Medium temperature heat |
LTH | Low temperature heat |
ESOU | energy sector own use |
GDP | Gross domestic product |
PPP | Purchasing power parity |
AAGR | Average annual growth rate |
INEGI | National Institute of Statistics and Geography |
IEA | International Energy Agency |
FAO | Food and Agriculture Organization |
Appendix A
Interval | Year | Events |
---|---|---|
1971–1982 | 1970s | Last round of import substitution industrialization policies; |
1970 | 40% of the population remained without electricity | |
1973 | Arab oil embargo | |
1974 | Beginning of the oil boom in the country | |
1976 | Economic deceleration; productivity loss in non-oil industries [99] | |
1977 | Large oil discoveries in the Gulf of Mexico | |
1982–1988 | 1980s | Economic stagnation |
Policies to reduce protectionism [94,103]. | ||
1982 | Oil boom peak (1000 million barrels a year [60]) | |
Sudden drop of international oil prices [59,94,102]. | ||
Economic crisis: Contraction of 0.5% and unemployment doubled | ||
1983 | Banking system nationalization | |
1988–2001 | 1988–1994 | Abolition of import licensing [98,103] |
Institutional updating for economic opening | ||
1990 | 87% electricity coverage [45,65] | |
1994 | The North-American Free Trade Agreement (NAFTA) | |
1994–1995 | Dutch disease driven economic crisis | |
1995–1997 | Export-led economic recovery [94]. | |
2000 | 98% electricity coverage [45,65] | |
2001–2008 | 2001 | Large surge in international oil prices |
2001–2007 | Oil export driven increase in public investment | |
2008–2009 | 2008 | World economic crisis that severely hit the U.S., the major commercial partner of Mexico. |
Appendix B
Sub-Sector | Energy Carrier Category | Carrier Type | Useful Exergy Category |
---|---|---|---|
Coal mines | Coal and coal products | MTH a | |
Oil and gas extraction | Oil and oil products | Crude oil | MTH |
Natural gas | Mechanical drive | ||
Electricity | According to Appendix C | ||
Coke ovens | Coal and coal products | HTH a | |
Refineries | Oil and oil products | Refinery gas | MTH |
LPG | MTH | ||
Motor gas | Mechanical drive | ||
Diesel | Mechanical drive | ||
Fuel oil | MTH | ||
Bitumen | MTH | ||
Petro coke | MTH | ||
Non-specified | MTH | ||
Natural gas | MTH | ||
Electricity | According to Appendix C | ||
Power producer plants | Electricity | According to Appendix C | |
CHP and heat plants | Electricity | According to Appendix C | |
Non-specified energy | Oil and oil products | Kerosene | MTH |
Electricity | According to Appendix C |
Sub-Sector | Energy Carrier Category | Carrier Type | Useful Exergy Category |
---|---|---|---|
Iron and steel | Coal and coal products | HTH a | |
Oil and oil products | LPG | HTH | |
Kerosene | HTH | ||
Gas diesel | Mechanical drive | ||
Fuel oil | HTH | ||
Petro coke | HTH | ||
Natural gas | HTH | ||
Electricity | According to Appendix C | ||
Chemical/petrochemical | Oil and oil products | LPG | 50% HTH/50% MTH a |
Gas diesel | Mechanical drive | ||
Fuel oil | 50% HTH/50% MTH | ||
Petro coke | 50% HTH/50% MTH | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C | ||
Non-ferrous metals | Oil and oil products | LPG | 50% HTH/50% MTH |
Gas diesel | Mechanical drive | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C | ||
Non-metallic minerals | Coal and coal products | 50% HTH/50% MTH | |
Oil and oil products | Gas diesel | Mechanical drive | |
Fuel oil | 50% HTH/50% MTH | ||
Petro coke | 50% HTH/50% MTH | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C | ||
Transport equipment | Oil and oil products | Gas diesel | Mechanical drive |
Fuel oil | 50% HTH/50% MTH | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C | ||
Machinery | Oil and oil products | LPG | 50% HTH/50% MTH |
Gas diesel | Mechanical drive | ||
Fuel oil | 50% HTH/50% MTH | ||
Petro coke | 50% HTH/50% MTH | ||
Mining and quarrying | Coal and coal products | 50% HTH/50% MTH | |
Oil and oil products | LPG | 50% HTH/50% MTH | |
Gas diesel | Mechanical drive | ||
Fuel oil | 50% HTH/50% MTH | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C | ||
Food and tobacco | Oil and oil products | LPG | LTH a |
Gas diesel | Mechanical drive | ||
Fuel oil | LTH | ||
Combustible renewables | LTH | ||
Natural gas | LTH | ||
Electricity | According to Appendix C | ||
Paper, pulp and printing | Oil and oil products | LPG | LTH |
Gas diesel | Mechanical drive | ||
Fuel oil | LTH | ||
Combustible renewables | LTH | ||
Natural gas | LTH | ||
Electricity | According to Appendix C | ||
Construction | Oil and oil products | Gas diesel | Mechanical drive |
Electricity | According to Appendix C | ||
Textile and leather | Electricity | According to Appendix C | |
Non-specified | Coal and coal products | 50% HTH/50% MTH | |
Oil and oil products | LPG | 50% HTH/50% MTH | |
Kerosene | 50% HTH/50% MTH | ||
Gas diesel | Mechanical drive | ||
Fuel oil | 50% HTH/50% MTH | ||
Petro coke | 50% HTH/50% MTH | ||
Other non-conventional | Solar/wind | LTH | |
Combustible renewables | LTH | ||
Natural gas | 50% HTH/50% MTH | ||
Electricity | According to Appendix C |
Sub-Sector | Energy Carrier Category | Carrier Type | Useful Exergy Category |
---|---|---|---|
Road | Oil and oil products | LPG | Mechanical drive |
Motor gas | Mechanical drive | ||
Diesel | Mechanical drive | ||
Natural gas | Mechanical drive | ||
Rail | Oil and oil products | Diesel | Mechanical drive |
Electricity | Mechanical drive | ||
Domestic navigation | Oil and oil products | Diesel | Mechanical drive |
Fuel Oil | Mechanical drive | ||
Domestic aviation | Oil and oil products | Diesel | Mechanical drive |
Fuel Oil | Mechanical drive | ||
Non specified | Oil and oil products | Diesel | Mechanical drive |
Sub-Sector | Energy Carrier Category | Carrier Type | Useful Exergy Category |
---|---|---|---|
Residential | Oil and oil products | LPG | LTH a |
Kerosene | 70% Lighting/30% LTH before 1985 and 100% Lighting after | ||
Natural gas | LTH | ||
Other non-conventional | Solar/wind | LTH | |
Combustible renewables | LTH | ||
Electricity | According to Appendix C | ||
Commerce/public services | Oil and oil products | LPG | LTH |
Diesel | Mechanical drive | ||
Fuel oil | LTH | ||
Natural gas | LTH | ||
Other non-conventional | Solar/wind | LTH | |
Electricity | According to Appendix C | ||
Agriculture/forestry | Oil and oil products | LPG | LTH |
Kerosene | LTH | ||
Diesel | Mechanical drive | ||
Electricity | According to Appendix C | ||
Non-specified (e.g., public lighting) | Electricity | According to Appendix C |
Appendix C
References
- International Organization for Standardization (ISO). Technical energy systems—Basic concepts. In ISO 13600; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Henriques, S.T. Energy Transitions, Economic Growth and Structural Change: Portugal in a Long-Run Comparative Perspective; Lund University: Lund, Sweden, 2011; Volume 54. [Google Scholar]
- Warr, B.; Ayres, R.U. Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy 2010, 35, 1688–1693. [Google Scholar]
- Alam, M.S. Bringing energy back into the economy. Rev. Radic. Polit. Econ. 2009, 41, 170–185. [Google Scholar] [CrossRef]
- Stern, D.I. The role of energy in economic growth. Ann. N. Y. Acad. Sci. 2011, 1219, 26–51. [Google Scholar] [CrossRef] [PubMed]
- Grubler, A. Energy transitions research: Insights and cautionary tales. Energy Policy 2012, 50, 8–16. [Google Scholar] [CrossRef]
- Kahrl, F.; Roland-Holst, D. Growth and structural change in china’s energy economy. Energy 2009, 34, 894–903. [Google Scholar] [CrossRef]
- Feng, T.; Sun, L.; Zhang, Y. The relationship between energy consumption structure, economic structure and energy intensity in china. Energy Policy 2009, 37, 5475–5483. [Google Scholar] [CrossRef]
- Rühl, C.; Appleby, P.; Fennema, J.; Naumov, A.; Schaffer, M. Economic development and the demand for energy: A historical perspective on the next 20 years. Energy Policy 2012, 50, 109–116. [Google Scholar] [CrossRef]
- Rubio, M.d.M.; Folchi, M. Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in latin america. Energy Policy 2012, 50, 50–61. [Google Scholar] [CrossRef]
- Dincer, I. The role of exergy in energy policy making. Energy Policy 2002, 30, 137–149. [Google Scholar] [CrossRef]
- Dimitropoulos, J. Energy productivity improvements and the rebound effect: An overview of the state of knowledge. Energy Policy 2007, 35, 6354–6363. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Recalde, M.; Ramos-Martin, J. Going beyond energy intensity to understand the energy metabolism of nations: The case of argentina. Energy 2012, 37, 122–132. [Google Scholar] [CrossRef]
- Chontanawat, J.; Hunt, L.C.; Pierse, R. Does energy consumption cause economic growth?: Evidence from a systematic study of over 100 countries. J. Policy Model. 2008, 30, 209–220. [Google Scholar] [CrossRef]
- Costantini, V.; Martini, C. The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data. Energy Econ. 2010, 32, 591–603. [Google Scholar] [CrossRef]
- Imran, K.; Siddiqui, M.M. Energy consumption and economic growth: A case study of three saarc countries. Eur. J. Soc. Sci. 2010, 16, 206–213. [Google Scholar]
- Jiang, Z.; Lin, B. China’s energy demand and its characteristics in the industrialization and urbanization process. Energy Policy 2012, 49, 608–615. [Google Scholar] [CrossRef]
- Wolde-Rufael, Y. Energy demand and economic growth: The african experience. J. Policy Model. 2005, 27, 891–903. [Google Scholar] [CrossRef]
- Ayres, R.U.; Warr, B. The Economic Growth Engine. How Energy and Growth Drive Material Prospertity; Edward Elgar: Cheltenham, UK, 2009. [Google Scholar]
- Warr, B.; Ayres, R.U.; Eisenmenger, N.; Krausmann, F.; Schandl, H. Energy use and economic development: A comparative analysis of useful work supply in austria, japan, the united kingdom and the us during 100 years of economic growth. Ecol. Econ. 2010, 69, 1904–1917. [Google Scholar] [CrossRef]
- Ayres, R.U.; Warr, B. Accounting for growth: The role of physical work. Struct. Change Econ. Dyn. 2005, 16, 181–209. [Google Scholar] [CrossRef]
- Warr, B.; Schandl, H.; Ayres, R.U. Long term trends in resource exergy consumption and useful work supplies in the uk, 1900 to 2000. Ecol. Econ. 2008, 68, 126–140. [Google Scholar] [CrossRef]
- Serrenho, A.C.; Sousa, T.; Warr, B.; Ayres, R.U.; Domingos, T. Decomposition of useful work intensity: The EU (European Union)—15 countries from 1960 to 2009. Energy 2014, 76, 704–715. [Google Scholar] [CrossRef]
- Serrenho, A.; Warr, B.; Sousa, T.; Ayres, R.U.; Domingos, T. Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009. Struct. Change Econ. Dyn. 2016, 36, 1–21. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; UNEP: Paris, France, 2011. [Google Scholar]
- Bithas, K.; Kalimeris, P. Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy? Energy 2013, 51, 78–84. [Google Scholar] [CrossRef]
- Ockwell, D.G. Energy and economic growth: Grounding our understanding in physical reality. Energy Policy 2008, 36, 4600–4604. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Martínez, M.; Rodríguez, L. Trends and prospects in Mexican residential energy use. Energy 1996, 21, 493–504. [Google Scholar] [CrossRef]
- Rosas, J.; Sheinbaum, C.; Morillon, D. The structure of household energy consumption and related CO2 emissions by income group in Mexico. Energy Sustain. Dev. 2010, 14, 127–133. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Ozawa, L.; Castillo, D. Using logarithmic mean divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico’s iron and steel industry. Energy Econ. 2010, 32, 1337–1344. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Ozawa, L. Energy use and CO2 emissions for Mexico’s cement industry. Energy 1998, 23, 725–732. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Mora, S.; Robles, G. Decomposition of energy consumption and CO2 emissions in Mexican manufacturing industries: Trends between 1990 and 2008. Energy Sustain. Dev. 2012, 16, 57–67. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Rodríguez, L. Recent trends in Mexican industrial energy use and their impact on carbon dioxide emissions. Energy Policy 1997, 25, 825–831. [Google Scholar] [CrossRef]
- Berndt, E.R.; Botero, G. Energy demand in the transportation sector of Mexico. J. Dev. Econ. 1985, 17, 219–238. [Google Scholar] [CrossRef]
- Solís, J.C.; Sheinbaum, C. Energy consumption and greenhouse gas emission trends in Mexican road transport. Energy Sustain. Dev. 2013, 17, 280–287. [Google Scholar] [CrossRef]
- Cheng, B.S. Energy consumption and economic growth in brazil, Mexico and venezuela: A time series analysis. Appl. Econ. Lett. 1997, 4, 671–674. [Google Scholar] [CrossRef]
- Galindo, L.M. Short- and long-run demand for energy in Mexico: A cointegration approach. Energy Policy 2005, 33, 1179–1185. [Google Scholar] [CrossRef]
- Aguayo, F.; Gallagher, K.P. Economic reform, energy, and development: The case of Mexican manufacturing. Energy Policy 2005, 33, 829–837. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Ruíz, B.J.; Ozawa, L. Energy consumption and related CO2 emissions in five latin american countries: Changes from 1990 to 2006 and perspectives. Energy 2011, 36, 3629–3638. [Google Scholar] [CrossRef]
- Ortiz, B.L. Análisis de requerimientos de energía con la metodología insumo-producto para el caso Mexicano 1971–2007. Econ. Inf. 2011, 371, 43–51. [Google Scholar]
- Livas-García, A. Análisis de insumo-producto de energía y observaciones sobre el desarrollo sustentable, caso Mexicano 1970–2010. Ing. Investig. Tecnol. 2015, 16, 239–251. [Google Scholar]
- International Energy Agency (IEA). Energy Balances of OECD Countries: Documentation for beyond 2020 Files; International Energy Agency: Paris, France, 2011. [Google Scholar]
- International Energy Agency (IEA). Energy Statistics of OECD Countries: Documentation for beyond 2020 Files; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Banco de Información Estadística; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2012. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas Históricas de México 2009; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2010. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Sistema Para la Consulta de las Estadísticas Históricas de México 2009; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2010. [Google Scholar]
- Food and Agriculture Organization (FAO). Calculation of the energy content of foods: Energy conversion factors. In Food Energy: Methods of Analysis and Conversion Factors; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- U.S. Department of Agriculture (USDA). Production, Supply and Distribution; U.S. Department of Agriculture: Washington, DC, USA, 2012.
- Food and Agriculture Organization (FAO). Faostat; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). OECD Stat; Organisation for Economic Co-operation and Development: Paris, France, 2011. [Google Scholar]
- The World Bank. Data by Country; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Wirsenius, S. Human use of Land and Organic Materials: Modeling the Turnover of Biomass in the Global Food System. Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden, 2000. [Google Scholar]
- Ayres, R.U.; Ayres, L.W.; Warr, B. Exergy, power and work in the us economy, 1900–1998. Energy 2003, 28, 219–273. [Google Scholar] [CrossRef]
- Harvey, L.D. Energy and the New Reality 1: Energy Efficiency and the Demand for Energy Services; Earthscan: London, UK, 2010. [Google Scholar]
- Wallace, R.-B. Coal in Mexico. Econ. Inf. 2009, 359, 138–160. [Google Scholar]
- Hernández Lecanda, R.F. El futuro de la fuerza motriz en los ferrocarriles Mexicanos. Mirada Ferrov. 2007, 9–13. [Google Scholar]
- U.S. Energy Information Administration (EIA). Analysis Briefs: Mexico; U.S. Energy Information Administration: Washington, DC, USA, 2012.
- Colmenares, F. Petróleo y crecimiento económico en México 1938–2006. Econ. UNAM 2008, 5, 53–65. [Google Scholar]
- Alvarez de la Borda, J. Crónica del Petróleo en México de 1863 a Nuestros Días; Petróleos Mexicanos: Mexico City, Mexico, 2006. [Google Scholar]
- Barsky, R.B.; Kilian, L. Oil and the macroeconomy since the 1970s. J. Econ. Perspect. 2004, 18, 115–134. [Google Scholar] [CrossRef]
- Carrillo, J.; García, P. Etapas industriales y conflictos laborales: La industria automotriz en México. Estudios Sociol. 1987, 14, 303–340. [Google Scholar]
- Fujigaki Cruz, E. Periplo industrial 1940–1960: Una ojeada al surgimiento de algunas ramas. In La Industria Mexicana y su Historia: Siglos xviii, xix y xx; Jáuregui, L., Romero Sotelo, M.E., Eds.; Facultad de Economía—UNAM: Mexico City, Mexico, 1997. [Google Scholar]
- Capasso, A.G. Situacion Actual del Ferrocarril en México. Master’s Thesis, Universidad de las Américas, Cholula, Mexico, 2007. [Google Scholar]
- Merrill, T.L.; MiroÌ, R. Mexico: Social Indicators; Inter-university Consortium for Political and Social Research: Washington, DC, USA, 1997. [Google Scholar]
- U.S. Energy Information Administration (EIA). Natural Gas Prices; U.S. Energy Information Administration: Washington, DC, USA, 2011.
- Valdez, J. Perspectives of natural gas in Mexico. In IAEE North American Conference; The International Association for Energy Economics: Mexico City, Mexico, 2003. [Google Scholar]
- Colegio México. Fuentes Para la Historia del Petróleo en México; Estadísticas Colegio México: Mexico City, Mexico, 2008. [Google Scholar]
- McCaa, R. The peopling of Mexico from origins to revolution. In A population History of North America; Haines, M.R., Steckel, R.H., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 241–304. [Google Scholar]
- D’Angelo, J.; Paz, D.; Cardenas, G. Posibilidades del secado de bagazo en la industria azucarera de México. Ing. Mec. Tecnol Desarro. 2006, 2, 41–46. [Google Scholar]
- INEGI. Censo de Población y Vivienda; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2010. [Google Scholar]
- Ayres, R.U.; Ayres, L.W.; Pokrovsky, V. On the efficiency of us electricity usage since 1900. Energy 2005, 30, 1092–1145. [Google Scholar] [CrossRef]
- Fouquet, R.; Pearson, P.J.G. Seven centuries of energy services: The price and use of light in the United Kingdom (1300–2000). Energy J. 2006, 27, 139–177. [Google Scholar] [CrossRef]
- Carmody, J.M. Rural electrification in the united states. Ann. Am. Acad. Polit. Soc. Sci. 1939, 201, 82–88. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Consumption & Efficiency; U.S. Energy Information Administration: Washington, DC, USA, 2010.
- U.S. Census Bureau. Computer and Internet Use; U.S. Census Bureau: Washington, DC, USA, 2010.
- U.S. Census Bureau. Population of United States; U.S. Census Bureau: Washington, DC, USA, 1995.
- Secretaría de Transportes y Vialidad del Distrito Federal (SETRAVI). Cronología del Transporte en la Ciudad de México; Secretaría de Transportes y Vialidad del Distrito Federal: Mexico City, Mexico, 2005. [Google Scholar]
- Cullen, J.M.; Allwood, J.M. Theoretical efficiency limits for energy conversion devices. Energy 2010, 35, 2059–2069. [Google Scholar] [CrossRef]
- Ford, K.W.; Rochlin, G.I.; Socolow, R.H.; Hartley, D.L.; Hardesty, D.R.; Lapp, M.; Dooher, J.; Dryer, F.; Berman, S.M.; Silverstein, S.D.; et al. Efficient Use of Energy; American Institute of Physics: New York, NY, USA, 1975. [Google Scholar]
- Palma, M.; Sousa, T.; Guevara, Z. How much detail should we use to compute societal aggregated exergy efficiencies? Energies 2016, 9. [Google Scholar] [CrossRef]
- De Beer, G.; Blok, K.; Worrell, E. Long term energy efficiency improvements in the iron and steel industry. In Summer Study; ECEEE, Ed.; European Council for an Energy Efficient Economy: Stockholm, Sweden, 1995. [Google Scholar]
- De Beer, G.; Blok, K.; Worrell, E. Future technologies for energy-efficient iron and steel making. Ann. Rev. Energy Environ. 1998, 23, 123–205. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Farla, J.; Schaeffer, R. Energy intensity in the iron and steel industry: A comparison of physical and economic indicators. Energy Policy 1997, 25, 727–744. [Google Scholar] [CrossRef]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Servicio Meteorológico Nacional (SMN). Normales Meteorológicas 1951–2000; Servicio Meteorológico Nacional: Mexico City, Mexico, 2010. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Mexico en Cifras; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2011. [Google Scholar]
- International Energy Agency-Energy Technology Systems Analysis Program (IEA-ETSAP). Automotive Lpg and Natural Gas Engines; Energy Technology Systems Analysis Program: Paris, France, 2010. [Google Scholar]
- Nordhaus, W.D. Do real output and real wage measures capture reality? The history of lighting suggests not. In The Economics of New Goods; Bresnahan, T.F., Gordon, R.J., Eds.; University of Chicago Press: Chicago, IL, USA, 1997; Volume 58, pp. 29–66. [Google Scholar]
- Rosen, M.A.; Bulucea, C.A. Using exergy to understand and improve the efficiency of electrical power technologies. Entropy 2009, 11, 820–835. [Google Scholar] [CrossRef]
- Wilson, D.G.; Whitt, F.R.; Papadopoulos, J. Bicycling Science; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Smil, V. Energy in World History; Westview Press: Boulder, CO, USA, 1994. [Google Scholar]
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Kuntz, S. Historia Mínima de la Economía Mexicana, 1519–2010; Colegio México: Mexico City, Mexico, 2012. [Google Scholar]
- Lin, J.Y. Economic Development and Transition: Thought, Strategy, and Viability; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- UNAM. Historia económica de México. Available online: http://www.economia.unam.mx/sua/site/materia/sem5/histecmexico2/presentacion.html (accessed on 23 October 2012).
- Aspra, L.A. Import substitution in Mexico: Past and present. World Dev. 1977, 5, 111–123. [Google Scholar] [CrossRef]
- The World Bank. Mexico—Manufacturing Sector: Situation, Prospect and Policies; The World Bank: Washington, DC, USA, 1979. [Google Scholar]
- Ebrahim-Zadeh, C. Dutch disease: Too much wealth managed unwisely. Financ. Dev. 2003, 40, 50–51. [Google Scholar]
- Reynolds, C.W. Why Mexico’s ‘stabilizing development’ was actually destabilizing (with some implications for the future). World Dev. 1978, 6, 1005–1018. [Google Scholar] [CrossRef]
- Corden, W.M. Booming sector and dutch disease economics: Survey and consolidation. Oxf. Econ. Pap. 1984, 36, 359–380. [Google Scholar]
- Looney, R.E. Economic Policymaking in Mexico: Factors Underlying the 1982 Crisis; Duke University Press: Durham, UK, 1985. [Google Scholar]
- Cárdenas, E. La reestructuración económica de 1982 a 1994. In Latin American Economies: History and Globalization Conference; UCLA Center for Economic History: Los Angeles, CA, USA, 2009. [Google Scholar]
- Serrenho, A. Useful work as and energy end-use accounting method: Historical and economic transitions and european patterns. Ph.D. Thesis, University of Lisbon, Lisboa, Portugal, 2013. [Google Scholar]
- Comisión Nacional de Fomento a la Vivienda. Guia Para el uso Eficiente e la Energía en la Vivienda; Comisión Nacional de Fomento a la Vivienda: Mexico City, Mexico, 2006. [Google Scholar]
- Comisión Nacional para el Uso Eficiente de la Energía. Publicación de la norma oficial Mexicana de eficiencia energética de lámparas para uso general. In Comunicados; Comisión Nacional para el Uso Eficiente de la Energía: Mexico City, Mexico, 2010. [Google Scholar]
- Comisión Nacional para el Uso Eficiente de la Energía. Proyecto Nacional de Eficiencia Energética en Alumbrado Público Municipal; Comisión Nacional para el Uso Eficiente de la Energía: Mexico City, Mexico, 2010. [Google Scholar]
- Maqueda, M.R.; Sánchez, L.A. Curvas de demanada de energía eléctrica en el sector doméstico de dos regiones de México. In Smart Metering West Coast Conference; Metering International Magazine: Seattle, WA, USA, 2008; pp. 173–180. [Google Scholar]
- Secretaría de Energía; IEA. Indicadores de Eficiencia Energética en Mexico: 5 Sectores, 5 Retos; Secretaría de Energía: Mexico City, Mexico, 2011. [Google Scholar]
Energy Carrier | Exergy Factor |
---|---|
Coal and coal products | 1.06 |
Oil and oil products | 1.06 |
Natural gas | 1.04 |
Combustible renewables | 1.11 |
Electricity | 1 |
Food and feed | 1 |
Other non-conventional | 1 |
Type | Eaten/Supplied Ratio | Gross/Metabolizable Ratio |
---|---|---|
Food a | 81% in 1970 b | 1.197 |
74% in 1992–2009 c | ||
Feed | 63% | NA |
Useful Exergy Sub-Category | Temperature Range | |
---|---|---|
High temperature heat (HTH) | >600 °C | 600 °C |
Medium temperature heat (MTH) | 120–600 °C | 360 °C |
Low temperature heat (LTH) | <120 °C | 80 °C |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara, Z.; Sousa, T.; Domingos, T. Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009. Energies 2016, 9, 488. https://doi.org/10.3390/en9070488
Guevara Z, Sousa T, Domingos T. Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009. Energies. 2016; 9(7):488. https://doi.org/10.3390/en9070488
Chicago/Turabian StyleGuevara, Zeus, Tânia Sousa, and Tiago Domingos. 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009" Energies 9, no. 7: 488. https://doi.org/10.3390/en9070488