Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices
Abstract
:1. Introduction
2. Study Area
3. Materials and Method
3.1. Field Survey
3.2. Thermal Comfort Indices
3.3. Data Analysis
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Population Reference Bureau. 2012 World population data sheet. Available online: http://www.prb.org/Publications/Datasheets/2012/world-population-data-sheet.aspx (accessed on 10 December 2012).
- Salata, F.; Golasi, I.; de Lieto Vollaro, A.; de Lieto Vollaro, R. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, E.; Bisegna, F.; Nardecchia, F.; Coppi, M.; Gugliermetti, F.; de Lieto Vollaro, A. Evaluation of different urban microclimate mitigation strategies through a PMV analysis. Sustainability 2015, 7, 9012–9030. [Google Scholar] [CrossRef]
- Pisello, A.L.; Castaldo, V.L.; Pignatta, G.; Cotana, F.; Santamouris, M. Experimental in-lab and in-field analysis of waterproof membranes for cool roof application and urban heat island mitigation. Energy Build. 2015. [Google Scholar] [CrossRef]
- Coppi, M.; Quintino, A.; Salata, F. Numerical study of a vertical channel heated from below to enhance natural ventilation in a residential building. Int. J. Vent. 2013, 12, 41–49. [Google Scholar]
- Coppi, M.; Quintino, A.; Salata, F. Fluid dynamic feasibility study of solar chimney in residentail buildings. Int. J. Heat Technol. 2011, 29, 1–5. [Google Scholar]
- Salata, F.; Alippi, C.; Tarsitano, A.; Golasi, I.; Coppi, M. A first approach to natural thermoventilation of residential buildings through ventilation chimneys supplied by solar ponds. Sustainability 2015, 7, 9649–9663. [Google Scholar] [CrossRef]
- Pisello, A.L.; Castaldo, V.L.; Rosso, F.; Piselli, C.; Ferrero, M.; Cotana, F. Traditional and innovative materials for energy efficiency in buildings. Key Eng. Mater. 2016, 678, 14–34. [Google Scholar] [CrossRef]
- Paolini, R.; Zinzi, M.; Poli, T.; Carnielo, E.; Mainini, A.G. Effect of ageing on solar spectral reflectance of roofing membranes: Natural exposure in Roma and Milano and the impact on the energy needs of commercial buildings. Energy Build. 2014, 84, 333–343. [Google Scholar] [CrossRef]
- Pisello, A.L.; Piselli, C.; Cotana, F. Thermal-physics and energy performance of an innovative green roof system: The Cool-Green Roof. Sol. Energy 2015, 116, 337–356. [Google Scholar] [CrossRef]
- Rosso, F.; Pisello, A.L.; Cotana, F.; Ferrero, M. Integrated thermal-energy analysis of innovative translucent white marble for building envelope application. Sustainability 2014, 6, 5439–5462. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill Inc.: New York, NY, USA, 1970. [Google Scholar]
- Jendritzky, G.; Sönning, W.; Swantes, H.J. Ein Objectives Bewertungsverfahren zur Beschreibung dest thermischen Milieus in der Stadt- und Landschaftsplanung (Klima-Michel Modell); Akad Raumforsch Landesplan Beitr: Hanover, Germany, 1979; Volume 28, p. 85. (In German) [Google Scholar]
- Association of German Engineers. Methods for the Human-Biometeorological Assessment of Climate and Air Hygiene for Urban and Regional Planning. Part I: Climate; Association of German Engineers: Berlin, Germany, 1998. [Google Scholar]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Kantor, N.; Unger, J.; Gulyas, A. Subjective estimation of thermal environment in recreational urban spaces e part 2: International comparison. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Yahia, M.W.; Johansson, E. Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. Int. J. Biometeorol. 2013, 57, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Monteiro, L.M.; Alucci, M.P. Calibration of outdoors thermal comfort models. In Proceedings of the 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006; Volume 1, pp. 515–522.
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical calibration of thermal indices in an urban outdoor Mediterranean environment. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, X.I.; Lykoudis, S.; Nikolopoulou, M. An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build. Environ. 2010, 45, 1346–1352. [Google Scholar] [CrossRef]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Evaluating the performance of bioclimatic indices on quantifying thermal sensation for pedestrians. Adv. Build. Energy Res. 2013, 7, 170–185. [Google Scholar] [CrossRef]
- Ruiz, M.A.; Correa, E.N. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities. Theor. Appl. Climatol. 2014, 122, 69–83. [Google Scholar] [CrossRef]
- Köppe, K.; Jendritzky, G. Inclusion of short-term adaptation to thermal stresses in a heat load warming procedure. Meteorol. Z. 2005, 14, 271–278. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Metje, N.; Sterling, M.; Baker, C.J. Pedestrian comfort using clothing values and body temperatures. J. Wind Eng. Ind. Aerodyn. 2008, 96, 412–435. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a subtropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Yamada, M.; Uematsu, Y.; Saeki, H. Comfort environment assessment based on bodily sensation in open air: Relationship between comfort sensation and meteorological factors. J. Wind Eng. Ind. Aerodyn. 2000, 87, 93–110. [Google Scholar] [CrossRef]
- Monteiro, L.M.; Alucci, M.P. An outdoor thermal comfort index for the subtropics. In Proceedings of the 26th Conference on Passive and Low Energy Architecture (PLEA), Quebec City, QC, Canada, 22–24 June 2009.
- Ruiz, M.A.; Correa, E.N. Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Build. Environ. 2015, 85, 40–51. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Jusuf, S.K. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 59, 426–435. [Google Scholar] [CrossRef]
- Yin, J.F.; Zheng, Y.F.; Wu, R.J.; Tan, J.G.; Ye, D.X.; Wang, W. An analysis of influential factors on outdoor thermal comfort in summer. Int. J. Biometeorol. 2012, 56, 941–948. [Google Scholar] [CrossRef] [PubMed]
- ASHRAE 55. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2004. [Google Scholar]
- Nikolopoulou, M. Designing Open Spaces in the Urban Environment: A Bioclimatic Approach; Centre Renewable Energy Sources (C.R.E.S): Pikermi, Greece, 2004; pp. 1–56. Available online: http://www.cres.gr/kape/education/1.design_guidelines_en.pdf (accessed on 11 February 2016).
- Missenard, F.A. Température effective d’une atmosphere Généralisation température résultante d’un milieu. In Encyclopédie Industrielle et Commerciale, Etude Physiologique et Technique de la Ventilation; Librerie de l’Enseignement Technique: Paris, France, 1993; pp. 131–185. (In French) [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- ISO 10551. Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales; International Organization of Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Petrarca, S.; Spinelli, F.; Cogliani, E.; Mancini, M. Climatic Profile of Italy (In Italian); Edizioni ENEA: Milano, Italy, 1999; Volume 5. [Google Scholar]
- Köppen, W. Das geographische system der climate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; p. 44. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 92, 1879–1900. [Google Scholar] [CrossRef]
- ISO 7726. Ergonomics of the Thermal Environment E Instruments for Measuring Physical Quantities; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Olesen, B.W.; Rosendahl, J.; Kalisperis, L.N.; Summers, L.H. Methods for measuring and evaluating the thermal radiation in a room. ASHRAE Trans. 1989, 95, 1028–1044. [Google Scholar]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1893–1983. [Google Scholar] [CrossRef]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int. J. Biometeorol. 2007, 52, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Andrade, H.; Alcoforado, M.J.; Oliveira, S. Perception of temperature and wind by users of public outdoor spaces: Relationships with weather parameters and personal characteristics. Int. J. Biometeorol. 2011, 55, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Bouden, C.; Ghrab, N. An adaptive thermal comfort model for the Tunisian context: A field study results. Energy Build. 2005, 37, 952–963. [Google Scholar] [CrossRef]
- Mifflin, M.D.; Jeor, S.T.S.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [PubMed]
- Allen, T.H.; Peng, M.T.; Chen, K.P.; Huang, T.F.; Chang, C.; Fang, H.S. Prediction of blood volume and adiposity in man from body weight and cube of height. Metabolism 1956, 5, 328–345. [Google Scholar] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments e application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Houghten, F.C.; Yaglou, C.P. Determining lines of equal comfort. ASHRAE Trans. 1923, 29, 163–176. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Nicol, J.F. A Handbook of Adaptive Thermal Comfort towards a Dynamic Model; University of Bath: Bath, UK, 2008. [Google Scholar]
- ISO 7730. Moderate Thermal Environments e Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort; International Organization for Standardization: Geneva, Switzerland, 1994. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 2002, 11, 1–190. [Google Scholar]
- Siple, P.; Passel, C. Measurements of dry atmospheric cooling in subfreezing temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar] [CrossRef]
- Pisello, A.L.; Pignatta, G.; Castaldo, V.L.; Cotana, F. Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement. Sustainability 2014, 6, 4706–4722. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Baldinelli, G. Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wires. Constr. Build. Mater. 2014, 68, 277–284. [Google Scholar] [CrossRef]
- Asdrubali, F.; Pisello, A.L.; D’Alessandro, F.; Bianchi, F.; Fabiani, C.; Cornicchia, M.; Rotili, A. Experimental and numerical characterization of innovative cardboard based panels: Thermal and acoustic performance analysis and life cycle assessment. Build. Environ. 2016, 95, 145–159. [Google Scholar] [CrossRef]
Variables | Months | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
TA (°C) | 7.2 | 8.4 | 10.5 | 13.0 | 17.2 | 21.1 | 23.9 | 24.1 | 21.0 | 16.5 | 11.5 | 8.1 |
TA MIN (°C) | 2.2 | 3.1 | 4.7 | 7.1 | 10.7 | 14.4 | 16.8 | 17.0 | 14.5 | 10.4 | 6.2 | 3.3 |
TA MAX (°C) | 12.3 | 13.7 | 16.2 | 19.0 | 23.7 | 27.7 | 31.1 | 31.2 | 27.5 | 22.5 | 16.8 | 13.0 |
RH (%) | 76 | 81 | 81 | 77 | 76 | 76 | 78 | 74 | 76 | 78 | 78 | 81 |
Thermal Perception Votes (−) | ASVEUROPE (−) A | ET (°C) | MOCI (−) | PET (°C) | PMV (−) | Classes of the Indices B |
---|---|---|---|---|---|---|
−3 | <−1.08 | <1 | <−2.5 | <4 | <−2.5 | −3 |
−2 | −1.08–−0.82 | 1–9 | −2.5–−1.5 | 4–8 | −2.5–−1.5 | −2 |
−1 | −0.82–−0.45 | 9–17 | −1.5–−0.5 | 8–18 | −1.5–−0.5 | −1 |
0 | −0.45–−0.08 | 17–21 | −0.5–+0.5 | 18–23 | −0.5–+0.5 | 0 |
+1 | −0.08–+0.23 | 21–23 | +0.5–+1.5 | 23–35 | +0.5–+1.5 | +1 |
+2 | +0.23–+0.61 | 23–27 | +1.5–+2.5 | 35–41 | +1.5–+2.5 | +2 |
+3 | >+0.61 | >27 | >+2.5 | >41 | >+2.5 | +3 |
Index | Coefficients | Percentage of Correct Predictions (%) | |
---|---|---|---|
Spearman (−) | Gamma (−) | ||
ASVEUROPE | 0.405 | 0.470 | 21.1 |
ET | 0.444 | 0.487 | 29.6 |
MOCI | 0.497 | 0.549 | 35.5 |
PET | 0.494 | 0.493 | 29.6 |
PMV | 0.505 | 0.536 | 32.3 |
Normalized Values | ||||
---|---|---|---|---|
Index | Coefficients | Percentage of Correct Predictions (%) | Total | |
Spearman (−) | Gamma (−) | |||
ASVEUROPE | 0.80 | 0.86 | 0.59 | 2.25 |
ET | 0.88 | 0.89 | 0.83 | 2.60 |
MOCI | 0.98 | 1.00 | 1.00 | 2.98 |
PET | 0.97 | 0.90 | 0.83 | 2.70 |
PMV | 1.00 | 0.98 | 0.91 | 2.89 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golasi, I.; Salata, F.; De Lieto Vollaro, E.; Coppi, M.; De Lieto Vollaro, A. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. https://doi.org/10.3390/en9070550
Golasi I, Salata F, De Lieto Vollaro E, Coppi M, De Lieto Vollaro A. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies. 2016; 9(7):550. https://doi.org/10.3390/en9070550
Chicago/Turabian StyleGolasi, Iacopo, Ferdinando Salata, Emanuele De Lieto Vollaro, Massimo Coppi, and Andrea De Lieto Vollaro. 2016. "Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices" Energies 9, no. 7: 550. https://doi.org/10.3390/en9070550
APA StyleGolasi, I., Salata, F., De Lieto Vollaro, E., Coppi, M., & De Lieto Vollaro, A. (2016). Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies, 9(7), 550. https://doi.org/10.3390/en9070550