A Mini Review: Recent Advances in Surface Modification of Porous Silicon
Abstract
:1. Introduction
2. Conventional Surface Modification Methods
2.1. Hydrosilylation & Carbonization
2.2. Oxidation
2.3. Hydrolytic Condensation
3. Recently Developed Surface Modification Methods
3.1. Thermally Induced Dehydrocoupling
3.2. Ring-opening Click Chemistry
3.3. Calcium- or Magnesium-Silicate Formation
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sailor, M.J. Porous Silicon in Practice: Preparation, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dubey, R.S.; Gautam, D.K. Porous silicon layers prepared by electrochemical etching for application in silicon thin film solar cells. Superlattices Microst. 2011, 50, 269–276. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Silicon Porosification: State of the Art. Crit. Rev. Solid State Mater. Sci. 2010, 35, 153–260. [Google Scholar] [CrossRef]
- Kolasinski, K.W.; Gimbar, N.J.; Yu, H.; Aindow, M.; Mäkilä, E.; Salonen, J. Regenerative Electroless Etching of Silicon. Angew. Chem. Int. Ed. 2017, 56, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, D.J.; Wang, A.G. Quantum confinement induced photoluminescence in porous silicon. Solid State Commun. 1995, 94, 905–909. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Lehmann, V.; Gösele, U. Porous silicon formation: A quantum wire effect. Appl. Phys. Lett. 1991, 58, 856–858. [Google Scholar] [CrossRef]
- Estevez, J.O.; Agarwal, V. Porous Silicon Photonic Crystals. In Handbook of Porous Silicon; Canham, L., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 805–814. [Google Scholar]
- Joo, J.; Defforge, T.; Loni, A.; Kim, D.; Li, Z.Y.; Sailor, M.J.; Gautier, G.; Canham, L.T. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl. Phys. Lett. 2016, 108, 153111. [Google Scholar] [CrossRef]
- Hérino, R. Porous silicon for microelectronics and optoelectronics. Mater. Sci. Technol. 1997, 13, 965–970. [Google Scholar] [CrossRef]
- Canham, L.T. Nanostructured Silicon as an Active Optoelectronic Material. In Frontiers of Nano-Optoelectronic Systems; Pavesi, L., Buzaneva, E., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 85–97. [Google Scholar]
- Kleps, I.; Nicolaescu, D.; Lungu, C.; Musa, G.; Bostan, C.; Caccavale, F. Porous silicon field emitters for display applications. Appl. Surf. Sci. 1997, 111, 228–232. [Google Scholar] [CrossRef]
- Fauchet, P.M.; Tsybeskov, L.; Peng, C.; Duttagupta, S.P.; Behren, J.V.; Kostoulas, Y.; Vandyshev, J.M.V.; Hirschman, K.D. Light-emitting porous silicon: Materials science, properties, and device applications. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 1126–1139. [Google Scholar] [CrossRef]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuator B-Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Tsamis, C.; Nassiopoulou, A.G. Porous Silicon for Chemical Sensors; Springer: Dordrecht, The Netherlands, 2005; pp. 399–408. [Google Scholar]
- Song, J.H.; Sailor, M.J. Quenching of Photoluminescence from Porous Silicon by Aromatic Molecules. J. Am. Chem. Soc. 1997, 119, 7381–7385. [Google Scholar] [CrossRef]
- Kim, D.; Kang, J.; Wang, T.; Ryu, H.G.; Zuidema, J.M.; Joo, J.; Kim, M.; Huh, Y.; Jung, J.; Ahn, K.H.; et al. Two-Photon In Vivo Imaging with Porous Silicon Nanoparticles. Adv. Mater. 2017, 29, 1703309. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Kumeria, T.; McInnes, S.J.P.; Maher, S.; Santos, A. Porous silicon for drug delivery applications and theranostics: Recent advances, critical review and perspectives. Expert Opin. Drug Deliv. 2017, 14, 1407–1422. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kumeria, T.; Bezem, M.T.; Wang, J.; Sailor, M.J. Self-Reporting Photoluminescent Porous Silicon Microparticles for Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Hou, H.; Moon, S.W.; Sailor, M.J.; Freeman, W.R.; Cheng, L. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1070–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Hall, D.J.; Qin, Z.; Anglin, E.; Joo, J.; Mooney, D.J.; Howell, S.B.; Sailor, M.J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 2013, 4, 2326. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M.J.; Zhang, J.-G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013, 24, 422001. [Google Scholar] [CrossRef]
- Ogata, Y.; Niki, H.; Sakka, T.; Iwasaki, M. Oxidation of Porous Silicon under Water Vapor Environment. J. Electrochem. Soc. 1995, 142, 1595–1601. [Google Scholar] [CrossRef]
- Mawhinney, D.B.; Glass, J.A.; Yates, J.T. FTIR Study of the Oxidation of Porous Silicon. J. Phys. Chem. B 1997, 101, 1202–1206. [Google Scholar] [CrossRef]
- Peng, W.; Rupich, S.M.; Shafiq, N.; Gartstein, Y.N.; Malko, A.V.; Chabal, Y.J. Silicon Surface Modification and Characterization for Emergent Photovoltaic Applications Based on Energy Transfer. Chem. Rev. 2015, 115, 12764–12796. [Google Scholar] [CrossRef] [PubMed]
- Thissen, P.; Seitz, O.; Chabal, Y.J. Wet chemical surface functionalization of oxide-free silicon. Prog. Surf. Sci. 2012, 87, 272–290. [Google Scholar] [CrossRef]
- Wong, K.T.; Lewis, N.S. What a Difference a Bond Makes: The Structural, Chemical, and Physical Properties of Methyl-Terminated Si(111) Surfaces. Acc. Chem. Res. 2014, 47, 3037–3044. [Google Scholar] [CrossRef] [PubMed]
- Bhairamadgi, N.S.; Pujari, S.P.; Trovela, F.G.; Debrassi, A.; Khamis, A.A.; Alonso, J.M.; Al Zahrani, A.A.; Wennekes, T.; Al-Turaif, H.A.; van Rijn, C.; et al. Hydrolytic and Thermal Stability of Organic Monolayers on Various Inorganic Substrates. Langmuir 2014, 30, 5829–5839. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Calder, S.; Yaffe, O.; Cahen, D.; Haick, H.; Kronik, L.; Zuilhof, H. Hybrids of Organic Molecules and Flat, Oxide-Free Silicon: High-Density Monolayers, Electronic Properties, and Functionalization. Langmuir 2012, 28, 9920–9929. [Google Scholar] [CrossRef]
- Buriak, J.M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 2002, 102, 1271–1308. [Google Scholar] [CrossRef]
- Ciampi, S.; Harper, J.B.; Gooding, J.J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: Surface preparation, passivation and functionalization. Chem. Soc. Rev. 2010, 39, 2158–2183. [Google Scholar] [CrossRef]
- Boukherroub, R.; Wojtyk, J.T.C.; Wayner, D.D.M.; Lockwood, D.J. Thermal Hydrosilylation of Undecylenic Acid with Porous Silicon. J. Electrochem. Soc. 2002, 149, H59–H63. [Google Scholar] [CrossRef]
- Buriak, J.M. Illuminating Silicon Surface Hydrosilylation: An Unexpected Plurality of Mechanisms. Chem. Mater. 2014, 26, 763–772. [Google Scholar] [CrossRef]
- Gurtner, C.; Wun, A.W.; Sailor, M.J. Surface Modification of Porous Silicon by Electrochemical Reduction of Organo Halides. Angew. Chem. Int. Ed. 1999, 38, 1966–1968. [Google Scholar] [CrossRef]
- Lees, I.N.; Lin, H.; Canaria, C.A.; Gurtner, C.; Sailor, M.J.; Miskelly, G.M. Chemical Stability of Porous Silicon Surfaces Electrochemically Modified with Functional Alkyl Species. Langmuir 2003, 19, 9812–9817. [Google Scholar] [CrossRef]
- Salonen, J.; Lehto, V.-P.; Björkqvist, M.; Laine, E.; Niinistö, L. Studies of Thermally-Carbonized Porous Silicon Surfaces. Phys. Stat. Solidi (a) 2000, 182, 123–126. [Google Scholar] [CrossRef]
- Canaria, C.A.; Huang, M.; Cho, Y.; Heinrich, J.L.; Lee, L.I.; Shane, M.J.; Smith, R.C.; Sailor, M.J.; Miskelly, G.M. The Effect of Surfactants on the Reactivity and Photophysics of Luminescent Nanocrystalline Porous Silicon. Adv. Funct. Mater. 2002, 12, 495–500. [Google Scholar] [CrossRef]
- Frotscher, U.; Rossow, U.; Ebert, M.; Pietryga, C.; Richter, W.; Berger, M.G.; Arens-Fischer, R.; Münder, H. Investigation of different oxidation processes for porous silicon studied by spectroscopic ellipsometry. Thin Solid Films 1996, 276, 36–39. [Google Scholar] [CrossRef]
- Gupta, P.; Dillon, A.C.; Bracker, A.S.; George, S.M. FTIR studies of H2O and D2O decomposition on porous silicon surfaces. Surf. Sci. 1991, 245, 360–372. [Google Scholar] [CrossRef]
- Joo, J.; Cruz, J.F.; Vijayakumar, S.; Grondek, J.; Sailor, M.J. Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv. Funct. Mater. 2014, 24, 5688–5694. [Google Scholar] [CrossRef]
- Fry, N.L.; Boss, G.R.; Sailor, M.J. Oxidation-induced trapping of drugs in porous silicon microparticles. Chem. Mater. 2014, 26, 2758–2764. [Google Scholar] [CrossRef]
- Song, J.H.; Sailor, M.J. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence. Inorg. Chem. 1998, 37, 3355–3360. [Google Scholar] [CrossRef]
- Mattei, G.; Alieva, E.V.; Petrov, J.E.; Yakovlev, V.A. Quick Oxidation of Porous Silicon in Presence of Pyridine Vapor. Phys. Status Solidi A-Appl. Res. 2000, 182, 139–143. [Google Scholar] [CrossRef]
- Schwartz, M.P.; Cunin, F.; Cheung, R.W.; Sailor, M.J. Chemical modification of silicon surfaces for biological applications. Phys. Status Solidi A-Appl. Res. 2005, 202, 1380–1384. [Google Scholar] [CrossRef]
- Kwon, E.J.; Skalak, M.; Bertucci, A.; Braun, G.; Ricci, F.; Ruoslahti, E.; Sailor, M.J.; Bhatia, S.N. Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections (Adv. Mater. 35/2017). Adv. Mater. 2017, 29, 1701527. [Google Scholar] [CrossRef]
- Kang, J.; Joo, J.; Kwon, E.J.; Skalak, M.; Hussain, S.; She, Z.G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Self-Sealing Porous Silicon-Calcium Silicate Core–Shell Nanoparticles for Targeted siRNA Delivery to the Injured Brain. Adv. Mater. 2016, 28, 7962–7969. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Joo, J.; Kang, J.; Kim, B.; Braun, G.B.; She, Z.-G.; Kim, D.; Mann, A.P.; Mölder, T.; Teesalu, T.; et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2018, 2, 95. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.S.; Dattelbaum, A.M.; Montaño, G.A.; Price, D.N.; Schmidt, J.G.; Martinez, J.S.; Grace, W.K.; Grace, K.M.; Swanson, B.I. Functional PEG-Modified Thin Films for Biological Detection. Langmuir 2008, 24, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Nijdam, A.J.; Cheng, M.M.C.; Geho, D.H.; Fedele, R.; Herrmann, P.; Killian, K.; Espina, V.; Petricoin, E.F.; Liotta, L.A.; Ferrari, M. Physicochemically modified silicon as a substrate for protein microarrays. Biomaterials 2007, 28, 550–558. [Google Scholar] [CrossRef]
- Anderson, G.W.; Zimmerman, J.E.; Callahan, F.M. N-Hydroxysuccinimide Esters in Peptide Synthesis. J. Am. Chem. Soc. 1963, 85, 3039. [Google Scholar] [CrossRef]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef]
- Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2014, 26, 724–744. [Google Scholar] [CrossRef]
- Wang, C.-F.; Sarparanta, M.P.; Mäkilä, E.M.; Hyvönen, M.L.K.; Laakkonen, P.M.; Salonen, J.J.; Hirvonen, J.T.; Airaksinen, A.J.; Santos, H.A. Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 2015, 48, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, H.; Mäkilä, E.; Fan, J.; Herranz-Blanco, B.; Wang, C.-F.; Rosa, R.; Ribeiro, A.J.; Salonen, J.; Hirvonen, J.; et al. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials 2015, 39, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Buriak, J.M. Dehydrogenative Silane Coupling on Silicon Surfaces via Early Transition Metal Catalysis. Inorg. Chem. 2006, 45, 1096–1102. [Google Scholar] [CrossRef]
- Kim, D.; Joo, J.; Pan, Y.; Boarino, A.; Jun, Y.W.; Ahn, K.H.; Arkles, B.; Sailor, M.J. Thermally induced silane dehydrocoupling on silicon nanostructures. Angew. Chem. Int. Ed. 2016, 128, 6533–6537. [Google Scholar] [CrossRef]
- Mao, Y.; Kim, D.; Hopson, R.; Sailor, M.J.; Wang, L.-Q. Investigation of grafted mesoporous silicon sponge using hyperpolarized 129 Xe NMR spectroscopy. J. Mater. Res. 2018, 33, 2637–2645. [Google Scholar] [CrossRef]
- Acres, R.G.; Ellis, A.V.; Alvino, J.; Lenahan, C.E.; Khodakov, D.A.; Metha, G.F.; Andersson, G.G. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. J. Phys. Chem. C 2012, 116, 6289–6297. [Google Scholar] [CrossRef]
- Kim, D.; Zuidema, J.M.; Kang, J.; Pan, Y.; Wu, L.; Warther, D.; Arkles, B.; Sailor, M.J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109. [Google Scholar] [CrossRef]
- Maddox, A.F.; Matisons, J.G.; Singh, M.; Zazyczny, J.; Arkles, B. Single Molecular Layer Adaption of Interfacial Surfaces by Cyclic Azasilane “Click-Chemistry”. MRS Online Proc. Libr. Arch. 2015, 1793, 35–40. [Google Scholar] [CrossRef]
- Pan, Y.; Maddox, A.; Min, T.; Gonzaga, F.; Goff, J.; Arkles, B. Surface-Triggered Tandem Coupling Reactions of Cyclic Azasilanes. Chem. Asian J. 2017, 12, 1198–1203. [Google Scholar] [CrossRef]
- Kang, J.; Kim, D.; Wang, J.; Han, Y.; Zuidema, J.M.; Hariri, A.; Park, J.H.; Jokerst, J.V.; Sailor, M.J. Enhanced Performance of a Molecular Photoacoustic Imaging Agent by Encapsulation in Mesoporous Silicon Nanoparticles. Adv. Mater. 2018, 1800512. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Carbonization (Si–H to Si–C) | - Single-step - Enhance hydrophobicity - Enhance stability | - Requires harsh reaction condition - Requires special instruments - Need practiced hands |
Oxidation (Si–H to Si–OH, Si–O–Si) | - Facile method - Enhance hydrophilicity - Bio friendly | - Loss of pSi during modification - Difficult to control oxidation state - Undesired pore clogging |
Hydrolytic condensation (Si–OH to Si–O–Si–R) | - Facile method - Functional group diversification - Bio friendly | - Loss of pSi during modification - Time consuming process - Undesired cross-linking of pSi |
Thermal dehydrocoupling (Si–H to Si–Si–R) | - Single-step, mild condition - Enhanced hydrophobicity - Functional group diversification | - Undesired Si-O formation - Large amount of reagent (neat) |
Ring opening click chemistry (Si–OH to Si–O–Si–R) | - High yield - Single-step, facile method - Functional group diversification - Inert to payload | - Reaction only in aprotic solvent - Only for hydroxylated pSi |
Ca-/Mg-silicate formation (Si–OH to Si–O–Ca/Mg–O–Si) | - Single-step, facile method - High loading yield - Photoluminescence generation - Further surface modification | - Exothermic reaction - Require further modification |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Kang, J.S.; Kim, D. A Mini Review: Recent Advances in Surface Modification of Porous Silicon. Materials 2018, 11, 2557. https://doi.org/10.3390/ma11122557
Lee SH, Kang JS, Kim D. A Mini Review: Recent Advances in Surface Modification of Porous Silicon. Materials. 2018; 11(12):2557. https://doi.org/10.3390/ma11122557
Chicago/Turabian StyleLee, Seo Hyeon, Jae Seung Kang, and Dokyoung Kim. 2018. "A Mini Review: Recent Advances in Surface Modification of Porous Silicon" Materials 11, no. 12: 2557. https://doi.org/10.3390/ma11122557
APA StyleLee, S. H., Kang, J. S., & Kim, D. (2018). A Mini Review: Recent Advances in Surface Modification of Porous Silicon. Materials, 11(12), 2557. https://doi.org/10.3390/ma11122557