Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Absorbency Dynamic Study
2.2. Water Sorption and Solubility
2.3. Photoelastic Study
3. Results
3.1. Absorbency Dynamic Study
3.2. Water Sorption and Solubility
3.3. Photoelastic Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Christensen, G.J. Why use resin cements? J. Am. Dent. Assoc. 2010, 141, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arnold, A.M.; Vargas, M.A.; Haselton, D.R. Current status of luting agents for fixed prosthodontics. J. Prosthet. Dent. 1999, 81, 135–141. [Google Scholar] [CrossRef]
- Radovic, I.; Monticelli, F.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Self-adhesive resin cements: A literature review. J. Adhes. Dent. 2008, 10, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Sunico-Segarra, M.; Segarra, A. A Practical Clinical Guide to Resin Cements; Springer: Berlin/Heidelberg, Germany, 2015; pp. 9–23. [Google Scholar]
- Rawls, H.R.; Shen, C.; Anusavice, K.J. Dental Cements. In Phillips’ Science of Dental Materials; Saunders: Philadelphia, PA, USA, 2013; pp. 307–339. [Google Scholar]
- Hill, E.E.; Lott, J. A clinically focused discussion of luting materials. Aust. Dent. J. 2011, 56 (Suppl. S1), 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mowafy, O. The use of resin cements in restorative dentistry to overcome retention problems. J. Can. Dent. Assoc. 2001, 67, 97–102. [Google Scholar] [PubMed]
- Vrochari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Turkistani, A.; Sadr, A.; Shimada, Y.; Nikaido, T.; Sumi, Y.; Tagami, J. Sealing performance of resin cements before and after thermal cycling: Evaluation by optical coherence tomography. Dent. Mater. 2014, 30, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Hitz, T.; Stawarczyk, B.; Fischer, J.; Hämmerle, C.H.F.; Sailer, I. Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent. Mater. 2012, 28, 1183–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feilzer, A.J.; De Gee, A.J.; Davidson, C.L. Increased Wall-to-Wall Curing Contraction in Thin Bonded Resin Layers. J. Dent. Res. 1989, 68, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Spinell, T.; Schedle, A.; Watts, D.C. Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dent. Mater. 2009, 25, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, A.; Navarra, C.O.; Marchesi, G.; Turco, G.; Di Lenarda, R.; Breschi, L.; Ferracane, J.L.; Cadenaro, M. Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dent. Mater. 2012, 28, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, M.; Takahashi, H.; Asakawa, Y.; Iwasaki, N. Color stability of adhesive resin cements after immersion in coffee. Clin. Oral Investig. 2015, 19, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, A.; Vrochari, A.D.; Hellwig, E.; Stampf, S.; Polydorou, O. Water sorption and water solubility of self-etching and self-adhesive resin cements. J. Prosthet. Dent. 2015, 114, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, H.Y. Sorption and solubility characteristics of self-adhesive resin cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef] [PubMed]
- Bociong, K.; Szczesio, A.; Sokolowski, K.; Domarecka, M.; Sokolowski, J.; Krasowski, M.; Lukomska-szymanska, M. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress. Materials 2017, 10, 1142. [Google Scholar] [CrossRef] [PubMed]
- Stomatologia—Materiały Polimerowe do Odbudowy; PN-EN ISO 4049:2010; Polski Komitet Normalizacyjny: Warszawa, Poland, 2010.
- Li, L.; Chen, M.; Zhou, X.; Lu, L.; Li, Y.; Gong, C.; Cheng, X. A case of water absorption and water/fertilizer retention performance of super absorbent polymer modified sulphoaluminate cementitious materials. Constr. Build. Mater. 2017, 150, 538–546. [Google Scholar] [CrossRef]
- Müller, J.A.; Rohr, N.; Fischer, J. Evaluation of ISO 4049: Water sorption and water solubility of resin cements. Eur. J. Oral Sci. 2017, 125, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Bociong, K. Naprężenia skurczowe generowane podczas fotoutwardzania eksperymentalnego kompozytu stomatologicznego. Cz. II. Przem. Chem. 2017, 1, 72–74. [Google Scholar] [CrossRef]
- Bociong, K.; Krasowski, M.; Domarecka, M.; Sokołowski, J. Wpływ metody fotopolimeryzacji kompozytów stomatologicznych na bazie zywic dimetakrylanowych na naprȩzenia skurczowe oraz wybrane właściwości utwardzonego materiału. Polimery 2016, 61, 499–508. [Google Scholar] [CrossRef]
- Domarecka, M.; Sokołowski, K.; Krasowski, M.; Szczesio, A.; Bociong, K.; Sokołowski, J.; Łukomska-Szymańska, M. Influence of water sorption on the shrinkage stresses of dental composites. J. Stomatol. 2016, 69, 412–419. [Google Scholar]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity, 2nd ed.; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Feilzer, A.J.; de Gee, A.J.; Davidson, C.L. Relaxation of polymerization contraction shear stress by hygroscopic expansion. J. Dent. Res. 1990, 69, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Santerre, J.P.; Shajii, L.; Leung, B.W. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral Biol. Med. 2001, 12, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.P.; Shenoy, V.U.; MV, S.; Walzade, P.S. Comparative Evaluation of Solubilities of Two Nanohybrid Composite Resins in Saliva Substitute and Distilled Water: An in vitro Study. J. Contemp. Dent. 2017, 7, 82–85. [Google Scholar]
- Siswomihardjo, W.; Sunarintyas, S.; Matinlinna, J.P. The influence of resin matrix on the water sorption of fiber-reinforced composites for DENTAL use. J. Eng. Appl. Sci. 2016, 11, 2678–2682. [Google Scholar]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Ling, L.; Xu, X.; Choi, G.Y.; Billodeaux, D.; Guo, G.; Diwan, R.M. Novel F-releasing composite with improved mechanical properties. J. Dent. Res. 2009, 88, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; de Oliveira Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Kei, L.; Wei, S.H.Y.; Cheung, G.S.P.; Tay, F.R.; Pashley, D.H. The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. J. Adhes. Dent. 2002, 4, 61–71. [Google Scholar] [PubMed]
- Wilson, A.D. Resin-modified glass-ionomer cements. Int. J. Prosthodont. 1990, 3, 425–429. [Google Scholar] [PubMed]
- Park, J.; Eslick, J.; Ye, Q.; Misra, A.; Spencer, P. The influence of chemical structure on the properties in methacrylate-based dentin adhesives. Dent. Mater. 2013, 31, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.J.; Silikas, N.; Zhang, Z.T.; Watts, D.C. Diffusion and concurrent solubility of self-adhering and new resin–matrix composites during water sorption/desorption cycles. Dent. Mater. 2011, 21, 97–205. [Google Scholar] [CrossRef] [PubMed]
- Rüttermann, S.; Krüger, S.; Raab, W.H.M.; Janda, R. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials—A comparative study. J. Dent. 2007, 35, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Musanje, L.; Shu, M.; Darvell, B.W. Water sorption and mechanical behaviour of cosmetic direct restorative materials in artificial saliva. Dent. Mater. 2001, 17, 394–401. [Google Scholar] [CrossRef]
- Bastioli, C.; Romano, G.; Migliaresi, C. Water sorption and mechanical properties of dental composites. Biomaterials 1990, 11, 219–223. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Göhring, T.N.; Besek, M.J.; Schmidlin, P.R. Attritional wear and abrasive surface alterations of composite resin materials in vitro. J. Dent. 2002, 30, 119–127. [Google Scholar] [CrossRef]
- Kalachandra, S.; Turner, D.T. Water sorption of polymethacrylate networks: Bis-GMA/TEGDM copolymers. J. Biomed. Mater. Res. 1987, 21, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Tantbirojn, D.; Lee, M.S.; Tu, L.S.; Delong, R. Can hygroscopic expansion compensate polymerization shrinkage? Part I. Deformation of restored teeth. Dent. Mater. 2011, 27, 126–133. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Rusby, S. Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials 2004, 25, 4001–4007. [Google Scholar] [CrossRef] [PubMed]
Material | Type | Composition | Curing Time (s) | Manufacturer |
---|---|---|---|---|
Cement-It | Composite resin cement | bis-GMA, UDMA, HDDMA, PEGDMA, barium-boro-silicate glass (65 wt %) | 20 | Jeneric Pentron (Wallingford, CT, USA) |
NX3 | Composite resin cement | TEGDMA, bis-GMA, fluoro-aluminosilicate glass (67.5 wt %/47 vol %), activators, stabilizers, radiopaque agent | 20 | Kerr (Orange, CA, USA) |
Variolink Esthetic DC | Composite resin cement | UMDA and further methacrylate monomers, ytterbium trifluoride, spheroid mixed oxide (67 wt %/38 vol %), initiators, stabilizers and pigments | 10 | Ivoclar Vivadent (Ellwangen, Germany) |
Estecem | Adhesive resin cement | bis-GMA, TEGDMA, bis-MPEPP, silica-zirconia filler (74 wt %), camphorquinone | 20 | Tokuyama Dental (Taitou, Japan) |
Multilink Automix | Adhesive resin cement | dimethacrylate and HEMA, barium glass and silica filler, ytterbiumtrifluoride (68 wt %), catalysts, stabilizers, pigments | 10 | Ivoclar Vivadent (Ellwangen, Germany) |
Panavia 2.0 | Adhesive resin cement | 10-MDP, BPEDMA, hydrophobic aliphatic metahrylates, hydrophilic aliphatic metahrylate, silanated silica filler, silanated barium glass filler, sodium fluoride (70.8 wt %) | 20 | Kuraray (Osaka, Japan) |
Breeze | Self-adhesive resin cement | bis-GMA, UDMA, TEGDMA, HEMA, 4-MET, silane treated barium glass, silica, BiOCl, Ca-Al-F-silicate, curing system | 20 | Jeneric Pentron (Wallingford, CT, USA) |
Calibra Universal | Self-adhesive resin cement | UDMA, trimethylolpropane trimethacrylate TMPTMA, bis-EMA—Bisphenol A ethoxylate dimethacrylate, TEGDMA, HEMA, 3-(acryloyloxy)-2-hydroxypropyl methacrylate, urethane modified bis-GMA, PENTA, silanated barium glass, fumed silica (48 vol %) | 10 | Dentsply Sirona (York, PA, USA) |
MaxCem Elite Chroma | Self-adhesive resin cement | HEMA, GDM, UDMA, 1,1,3,3-tetramethylbutyl hydroperoxide TEGDMA, fluoroaluminosilicate glass, GPDM, barium glass filler, fumed silica (69 wt %) | 10 | Kerr (Orange, CA, USA) |
Panavia SA Cement Plus | Self-adhesive resin cement | bis-GMA, TEGDMA, HEMA, 10-MDP, hydrophobic aromatic dimethacrylate, hydrophobic aliphatic dimethacrylate, sodium fluoride, silanated barium glass filler, silanated colloidal silica (70 wt %/40 vol %) | 10 | Kuraray (Osaka, Japan) |
RelyX U200 | Self-adhesive resin cement | methacrylate monomers containing phosphoric acid groups, methacrylate monomers, silanated fillers (70 wt %/43 vol %), initiator components, stabilizers, rheological additives, alkaline(basic) initiator components, stabilizers, pigments | 20 | 3M ESPE (St. Paul, MN, USA) |
SmartCem 2 | Self-adhesive resin cement | UDMA, urethane modified bis-GMA, TEGDMA, PENTA, dimethacrylate resins, barium boron fluoroaluminosilicate glass amorphous silica (69 wt %/46 vol %) | 10 | Dentsply Sirona (York, PA, USA) |
SpeedCEM Plus | Self-adhesive resin cement | UDMA, TEGDMA, PEGDMA, methacrylated phosphoric acid ester, 1,10-decandiol dimethacrylate, copolymers, dibenzoyl peroxide, ytterbium trifluoride, barium glass, silicon dioxide (75 wt %/45 vol %) | 20 | Ivoclar Vivadent (Ellwangen, Germany) |
Bonding system | Manufacturer | Curing Time (s) | Bonding System Dedicated to |
---|---|---|---|
Bond-1 C&B Primer/Adhesive | Jeneric Pentrton (Wallingford, CT, USA) | 10 | Cement It, Breeze |
Clearfil SE bond | Kuraray (Osaka, Japan) | 10 | Panavia 2.0, Panavia SA Cement Plus |
Easy Bond | 3M ESPE (St. Paul, MN, USA) | 10 | RelyX U200 |
Estelink | Tokuyam Dental (Taitou, Japan) | 10 | Estecem |
Monobond Plus | Ivoclar Vivadent (Ellwangen, Germany) | 10 | Variolink Esthetic DC, Multilink Automix, SpeedCEM Plus |
OptiBond XRT | Kerr (Orange, CA, USA) | 10 | NX3, MaxCem Elite Chroma |
Prime&Bond Elect Universal | Dentsply Sirona (York, PA, USA) | 10 | SmartCem 2, Calibra Universal |
Material | Stress State (MPa) | Contraction Stress Drop (%) | Sorption (µg/mm3) | Solubility (µg/mm3) | |
---|---|---|---|---|---|
0.5 h | 2016 h | ||||
Cement It | 10.9 ± 2.2 | −1.6 ± 0.4 | 115 * | 27.8 ± 0.8 | 1.9 ± 0.4 |
NX3 | 6.3 ± 0.1 | 1.6 ± 0.1 | 79 | 23.8 ± 0.6 | 3.7 ± 1.2 |
Variolink Esthetic | 10.9 ± 0.4 | 4.7 ± 0.1 | 57 | 22.4 ± 0.8 | 10.0 ± 2.0 |
Estecem | 6.8 ± 0.9 | 1.6 ± 0.2 | 76 | 12.5 ± 2.2 | 4.6 ± 1.9 |
Multilink Automix | 12.5 ± 0.4 | 2.1 ± 0.9 | 83 | 25.3 ± 1.5 | 2.2 ± 0.8 |
Panavia 2.0 | 5.3 ± 1.8 | −4.8 ± 0.4 | 191 * | 33,9 ± 1.7 | 11.1 ± 1.0 |
Breeze | 7.8 ± 1.6 | −6.3 ± 1.6 | 180 * | 47.7 ± 3.1 | 3.1 ± 0.5 |
Calibra Universal | 11.1 ± 0.7 | 0.0 ± 0.8 | 100 | 30.9 ± 1.5 | 5.0 ± 2.6 |
MaxCem Elite Chroma | 10.4 ± 0.9 | −6.3 ± 0.3 | 160 * | 50.4 ± 1.3 | 8.5 ± 1.3 |
Panavia SA Plus | 4.8 ± 0.4 | −1.6 ± 0.2 | 133 * | 26.4 ± 1.3 | 1.7 ± 0.4 |
RelyX U200 | 13.5 ± 0.8 | 2.6 ± 0.9 | 81 | 29.6 ± 1.3 | 0.4 ± 0.2 |
SmartCem 2 | 15.1 ± 0.9 | 1.6 ± 0.9 | 89 | 33.0 ± 0.9 | 4.9 ± 1.2 |
SpeedCEM Plus | 11.9 ± 1.1 | −1.6 ± 0.4 | 113 * | 28.2 ± 0.5 | 2.5 ± 0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973. https://doi.org/10.3390/ma11060973
Sokolowski G, Szczesio A, Bociong K, Kaluzinska K, Lapinska B, Sokolowski J, Domarecka M, Lukomska-Szymanska M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials. 2018; 11(6):973. https://doi.org/10.3390/ma11060973
Chicago/Turabian StyleSokolowski, Grzegorz, Agata Szczesio, Kinga Bociong, Karolina Kaluzinska, Barbara Lapinska, Jerzy Sokolowski, Monika Domarecka, and Monika Lukomska-Szymanska. 2018. "Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion" Materials 11, no. 6: 973. https://doi.org/10.3390/ma11060973
APA StyleSokolowski, G., Szczesio, A., Bociong, K., Kaluzinska, K., Lapinska, B., Sokolowski, J., Domarecka, M., & Lukomska-Szymanska, M. (2018). Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials, 11(6), 973. https://doi.org/10.3390/ma11060973