Cyclodehydration of 1,4-butanediol over Zr-Al Catalysts: Effect of Reaction Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation and Characterization
2.2. Reaction Studies
3. Results and Discussion
3.1. BDO Cyclodehydration with Pure BDO Feed
3.2. BDO Cyclodehydration Using Aqueous BDO Feed
3.3. Catalyst Characterization Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karas, L.; Piel, W.J. Ethers. In Encyclopedia of Chemical Technology; Seidel, A., Ed.; Wiley: New York, NY, USA, 2005; Volume 10, pp. 567–583. [Google Scholar]
- Winfield, M.E. Catalytic dehydration and hydration. In Catalysis; Emmett, P.H., Ed.; Reinhold: New York, NY, USA, 1960; Volume VII, pp. 93–182. [Google Scholar]
- Kraus, M.; Knozinger, H. Elimination and addition reactions. In Handbook of Heterogeneous Catalysis; Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; Volume 7, pp. 3592–3603. [Google Scholar]
- Limbeck, U.; Altwicker, C.; Kunz, U.; Hoffmann, U. Rate expression for THF synthesis on acidic ion exchange resin. Chem. Eng. Sci. 2001, 56, 2171–2178. [Google Scholar] [CrossRef]
- Dubner, W.S.; Shum, W.P. Production of butanediol. U.S. Patent 6,969,780, 29 November 2005. [Google Scholar]
- Chen, S.C.; Chu, C.C.; Lin, F.S.; Chou, J.Y.; Huang, C.C. Modified Raney nickel catalyst and a process for preparing diols by using the same. U.S. Patent 5,888,923, 30 March 1999. [Google Scholar]
- Ingram, A.; Le, B. 1,4-butanediol/tetrahydrofuran 2012-3 Report, Nexant’s Chemsystems Process Evaluation/Research Planning (PERP) Program. April 2013. Available online: http://thinking.nexant.com/sites/default/files/report/field_attachment_abstract/201304/2012_3_abs.pdf (accessed on 5 June 2019).
- Aghaziarati, M.; Kazemeini, M.; Soltanieh, M.; Sahebdelfar, S. Evaluation of Zeolites in Production of Tetrahydrofuran from 1,4-Butanediol: Performance Tests and Kinetic Investigations. Ind. Eng. Chem. Res. 2007, 46, 726–733. [Google Scholar] [CrossRef]
- Baba, T.; Ono, Y. Kinetic studies in liquid phase dehydration-cyclization of 1,4-butanediol to tetrahydrofuran with heteropoly acids. J. Mol. Catal. 1986, 37, 317–326. [Google Scholar] [CrossRef]
- Murata, A.; Tsuchiya, S. Jpn. Tetrahydrofuran from 1,4-butanediol. JP 48,001,075, 13 January 1973. [Google Scholar]
- Li, K.T.; Peng, Y.C. Methylation of n-butylamine over solid-acid catalysts. Appl. Catal. A. Gen. 1994, 109, 225–233. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, L.Y.; Wang, J.S.; Zhou, H.Y. Research on additives assisted catalytic cyclo-dehydration of 1,4-butanediol to tetrahydrofuran in near-critical water. Adv. Mater. Res. 2012, 550–553, 693–698. [Google Scholar] [CrossRef]
- Vaidya, S.H.; Bhandari, V.M.; Chaudhari, R.V. Reaction kinetics studies on catalytic dehydration of 1,4-butanediol using cation exchange resin. Appl. Catal. A. Gen. 2003, 242, 321–328. [Google Scholar] [CrossRef]
- Yamamoto, N.; Sato, S.; Takahashi, R.; Inui, K. Synthesis of homoallyl alcohol from 1,4-butanediol over ZrO2 catalyst. Catal. Commun. 2005, 6, 480–484. [Google Scholar] [CrossRef]
- Kruse, A.; Dinjus, E. Hot compressed water as reaction medium and reactant. J. Supercrit. Fluids 2007, 39, 362–380. [Google Scholar] [CrossRef]
- Hunter, S.E.; Ehrenberger, C.E.; Savage, P.E. Kinetics and mechanism of tetrahydrofuran synthesis via 1,4-butanediol dehydration in high-temperature water. J. Organ. Chem. 2006, 71, 6229–6239. [Google Scholar] [CrossRef]
- Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catal. Sci. Technol. 2012, 2, 1113–1125. [Google Scholar] [CrossRef]
- Vandau, M.L. Sol-Gel processes. In Handbook of Heterogeneous Catalysis; Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; Volume 1, pp. 134–135. [Google Scholar]
- Li, K.T.; Wang, C.Y. Succinic acid esterification on mixed oxides with titanium. Chem. Eng. Commun. 2016, 203, 1641–1647. [Google Scholar] [CrossRef]
- Li, K.T.; Wang, I.; Wu, J.C. Surface and catalytic properties of TiO2-ZrO2 mixed oxides. Catal. Surv. Asia 2012, 16, 240–248. [Google Scholar] [CrossRef]
- Li, K.T.; Wang, C.K.; Wang, I.; Wang, C.M. Esterification of lactic acid over TiO2-ZrO2 catalysts. Appl. Catal. A Gen. 2011, 392, 180–183. [Google Scholar] [CrossRef]
- Li, K.T.; Tsai, L.D.; Wu, C.H.; Wang, I. Lactic acid esterification on titana-silica binary oxides. Ind. Eng. Chem. Res. 2013, 52, 734–739. [Google Scholar]
- Li, K.T.; Wang, C.K. Esterification of lactic acid over TiO2-Al2O3 catalysts. Appl. Catal. A Gen. 2012, 433, 275–279. [Google Scholar] [CrossRef]
- Li, K.T.; Yen, C.S.; Shyu, N.S. Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur. Appl. Catal. A Gen. 1997, 156, 117–130. [Google Scholar] [CrossRef]
- Li, K.T.; Huang, M.Y.; Cheng, W.D. Vanadium-based mixed oxide catalysts for selective oxidation of hydrogen sulfide to sulfur. Ind. Eng. Chem. Res. 1996, 35, 621–626. [Google Scholar] [CrossRef]
- Li, K.T.; Shyu, N.S. Catalytic oxidation of hydrogen sulfide to sulfur on vanadium antimonite. Ind. Eng. Chem. Res. 1997, 36, 1480–1484. [Google Scholar] [CrossRef]
- Li, K.T.; Chi, Z.H. Selective oxidation of hydrogen sulfide on rare earth orthovanadates and magnesium vanadates. Appl. Catal. A Gen. 2001, 206, 197–203. [Google Scholar] [CrossRef]
- Li, K.T.; Huang, C.H. Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: Promotional effect of antimony oxide addition. Ind. Eng. Chem. Res. 2006, 45, 7096–7199. [Google Scholar] [CrossRef]
- Li, K.T.; Wu, K.S. Selective oxidation of hydrogen sulfide to sulfur on vanadium-based catalysts containing iron and antimony. Ind. Eng. Chem. Res. 2001, 40, 1052–1057. [Google Scholar] [CrossRef]
- Li, K.T.; Chi, Z.H. Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur. Appl. Catal. B 2001, 31, 173–182. [Google Scholar] [CrossRef]
- Li, K.T.; Huang, C.H. Iron-molybdenum-oxide catalysts for selective oxidation of hydrogen sulfide to sulfur. Canad. J. Chem. Eng. 1999, 77, 1141–1145. [Google Scholar] [CrossRef]
- Dabbagh, H.A.; Zamani, M. Catalytic conversion of alcohols over alumina–zirconia mixed oxides: Reactivity and selectivity. Appl. Catal. A Gen. 2011, 404, 141–148. [Google Scholar] [CrossRef]
- Kalonji, G.; McKittrick, J.; Hobbs, L.W. Applications of rapid solidification theory and practice to alumina-zirconia ceramics. In Advances in Ceramics; Claussen, N., Ruhle, M., Heuer, A.H., Eds.; American Ceramic Society: Columbus, OH, USA, 1983; Volume 17, pp. 816–825. [Google Scholar]
- Jayaram, V.; Whitney, T.; Levi, C.G.; Mehrabian, R. Characterization of Al2O3-ZrO2 powders produced by electrohydrodynamic atomization. Mater. Sci. Eng. A 1990, 124, 65–81. [Google Scholar] [CrossRef]
- McKittrick, J.; Kalonji, G.; Ando, T. Crystallization of a rapidly solidified Al2O3-ZrO2 eutectic glass. J. Non-Cryst. Sol. 1987, 94, 163–174. [Google Scholar] [CrossRef]
- Soisuwan, S.; Panpranot, J.; Trimm, D.L.; Praserthdam, P. A study of alumina–zirconia mixed oxides prepared by the modified Pechini method as Co catalyst supports in CO hydrogenation. Appl. Catal. A Gen. 2006, 303, 268–272. [Google Scholar] [CrossRef]
- Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K. Acidic properties of Binary Metal Oxides. Bull. Chem. Soc. Jpn. 1973, 46, 2985–2988. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, W.; Zhang, M.; Tao, K. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2-Al2O3. Catal. Today 2004, 93–95, 595–601. [Google Scholar] [CrossRef]
- Fogler, H.S. Elements of Chemical Reaction Engineering, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006; pp. 267–268. [Google Scholar]
- Kung, H.H. Transition Metal Oxides, Surface Chemistry and Catalysis; Elesvier: Amsterdam, The Netherlands, 1989; pp. 57–133. [Google Scholar]
- Jolivet, J.P. Metal Oxide Chemistry and Synthesis: From Solution to Solid State; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Hughes, T.R.; White, H.M. A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy. J. Phys. Chem. 1967, 71, 2192–2201. [Google Scholar] [CrossRef]
- Parry, E.P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 1963, 2, 371–379. [Google Scholar] [CrossRef]
- Kaluza, L.; Zdrazil, M. Preparation of zirconia-supported hydrodesulphurization catalysts by water-assisted spreading. Appl. Catal. A Gen. 2007, 329, 58–67. [Google Scholar] [CrossRef]
- Damyanova, S.; Grange, P.; Delmon, B. Surface Characterization of Zirconia-Coated Alumina and Silica Carriers. J. Catal. 1997, 168, 421–430. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Z.; Wang, D.; Forsling, W. Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr) oxides. J. Colloid Interface Sci. 2007, 308, 395–404. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-T.; Chen, K.-W. Cyclodehydration of 1,4-butanediol over Zr-Al Catalysts: Effect of Reaction Medium. Materials 2019, 12, 2092. https://doi.org/10.3390/ma12132092
Li K-T, Chen K-W. Cyclodehydration of 1,4-butanediol over Zr-Al Catalysts: Effect of Reaction Medium. Materials. 2019; 12(13):2092. https://doi.org/10.3390/ma12132092
Chicago/Turabian StyleLi, Kuo-Tseng, and Kuan-Wen Chen. 2019. "Cyclodehydration of 1,4-butanediol over Zr-Al Catalysts: Effect of Reaction Medium" Materials 12, no. 13: 2092. https://doi.org/10.3390/ma12132092