Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review
Abstract
:1. Introduction
2. Principles of the Carbonaceous Photocatalysts
3. Synthesis and Applications of Carbonaceous Photocatalysts
3.1. Activated Carbon
3.1.1. AC Powder
3.1.2. AC Fiber
3.2. Carbon Dot
3.3. Carbon Nanotube/Nanofiber
3.4. Graphene
3.5. Fullerene
3.6. g-C3N4
3.7. Carbon Sponge/Aerogel
4. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sueyoshi, T.; Goto, M. Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors. Energy Econ. 2014, 42, 299–312. [Google Scholar] [CrossRef]
- Yoon, T.P.; Ischay, M.A.; Du, J.N. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Yi, Z.G.; Ye, J.H.; Kikugawa, N.; Kako, T.; Ouyang, S.X.; Stuart-Williams, H.; Yang, H.; Cao, J.Y.; Luo, W.J.; Li, Z.S.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Park, S.J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Zou, Z.G.; Ye, J.H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhao, H.L.; Andino, J.M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828. [Google Scholar] [CrossRef]
- Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T.M.; Tanaka, H.; Kajino, T. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 2011, 133, 15240–15243. [Google Scholar] [CrossRef]
- Zhang, L.S.; Wong, K.H.; Yip, H.Y.; Hu, C.; Yu, J.C.; Chan, C.Y.; Wong, P.K. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals. Environ. Sci. Technol. 2010, 44, 1392–1398. [Google Scholar] [CrossRef]
- Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. 1998, 32, 726–728. [Google Scholar] [CrossRef]
- Munir, S.; Dionysiou, D.D.; Khan, S.B.; Shah, S.M.; Adhikari, B.; Shah, A. Development of photocatalysts for selective and efficient organic transformations. J. Photochem. Photobiol. B Biol. 2015, 148, 209–222. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 157–170. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Dong, H.R.; Zeng, G.M.; Tang, L.; Fan, C.Z.; Zhang, C.; He, X.X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts 2019, 9, 32. [Google Scholar] [CrossRef]
- Zhang, H.J.; Chen, G.H.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.Y.; Han, Y.Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z.H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef]
- Babu, B.; Shim, J.; Kadam, A.N.; Yoo, K. Modification of porous g-C3N4 nanosheets for enhanced photocatalytic activity: In-situ synthesis and optimization of NH4Cl quantity. Catal. Commun. 2019, 124, 123–127. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Jayaraman, T.; Murthy, A.P.; Elakkiya, V.; Chandrasekaran, S.; Nithyadharseni, P.; Khan, Z.; Senthil, R.A.; Shanker, R.; Raghavender, M.; Kuppusami, P.; et al. Recent development on carbon based heterostructures for their applications in energy and environment: A review. J. Ind. Eng. Chem. 2018, 64, 16–59. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, S.J. A study on photocatalytic behaviors of activated carbon fibers impregnated with n-doped titania. J. Nanosci. Nanotechnol. 2017, 17, 7593–7597. [Google Scholar] [CrossRef]
- Zhang, G.G.; Wang, X.C. A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution. J. Catal. 2013, 307, 246–253. [Google Scholar] [CrossRef]
- Tran, P.D.; Xi, L.F.; Batabyal, S.K.; Wong, L.H.; Barber, J.; Loo, J.S.C. Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Phys. Chem. Chem. Phys. 2012, 14, 11596–11599. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Park, M.; Kim, H.Y.; Ding, B.; Park, S.J. In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation. Appl. Surf. Sci. 2016, 384, 192–199. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhang, L.S.; Chen, Z.G.; Hu, J.Q.; Li, S.J.; Wang, Z.H.; Liu, J.S.; Wang, X.C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Panthi, G.; Barakat, N.A.M.; Park, M.; Kim, H.Y.; Park, S.J. Fabrication of PdS/ZnS NPs doped PVAc hybrid electrospun nanofibers: Effective and reusable catalyst for dye photodegradation. J. Ind. Eng. Chem. 2015, 21, 298–302. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Sun, Y.J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.O.; Schlogl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Reddy, K.R.; Reddy, C.V.; Nadagouda, M.N.; Shetti, N.P.; Jaesool, S.; Aminabhavi, T.M. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. J. Environ. Manag. 2019, 238, 25–40. [Google Scholar] [CrossRef]
- Babu, B.; Cho, M.; Byon, C.; Shim, J. Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater. Lett. 2018, 212, 327–331. [Google Scholar] [CrossRef]
- Li, J.; Ng, D.H.L.; Kwong, F.L.; Chiu, K.L. Hierarchically porous TiO2-MnTiO3/hollow activated carbon fibers heterojunction photocatalysts with synergistic adsorption-photocatalytic performance under visible light. J. Porous Mater. 2017, 24, 1047–1059. [Google Scholar] [CrossRef]
- Jiang, J.J.; Ye, G.; Wang, Z.; Lu, Y.X.; Chen, J.; Matyjaszewski, K. Heteroatom-Doped Carbon Dots (CDs) as a class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight. Angew. Chem. Int. Ed. 2018, 57, 12037–12042. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.B.; Zhou, J. Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation. J. Mater. Sci. 2019, 54, 3294–3308. [Google Scholar] [CrossRef]
- Gao, C.; Chen, S.M.; Wang, Y.; Wang, J.W.; Zheng, X.S.; Zhu, J.F.; Song, L.; Zhang, W.K.; Xiong, Y.J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624. [Google Scholar] [CrossRef]
- Li, G.S.; Jiang, B.; Li, I.; Lian, Z.C.; Xiao, S.N.; Zhu, J.; Zhang, D.Q.; Li, H.X. C-60/Bi2TiO4F2 heterojunction photocatalysts with enhanced visible-light activity for environmental remediation. ACS Appl. Mater. Interfaces 2013, 5, 7190–7197. [Google Scholar] [CrossRef]
- Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Athanasekou, C.P.; Dimotikali, D.; Trapalis, C. Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Appl. Catal. B Environ. 2018, 239, 16–26. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Yadav, H.M.; Park, H.H. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam. J. Mol. Liq. 2019, 277, 424–433. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.T.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Tong, H.; Ouyang, S.X.; Bi, Y.P.; Umezawa, N.; Oshikiri, M.; Ye, J.H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Low, J.X.; Yu, J.G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Z.L.; Luo, B.; Wang, S.C.; Wang, L.Z. Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Appl. Catal. B Environ. 2019, 246, 195–201. [Google Scholar] [CrossRef]
- Raji, R.; Gopchandran, K.G. Plasmonic photocatalytic activity of ZnO:Au nanostructures: Tailoring the plasmon absorption and interfacial charge transfer mechanism. J. Hazard. Mater. 2019, 368, 345–357. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.M.; Lang, X.F.; Wang, H.Y.; Lou, X.W.; Aydil, E.S. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 2014, 7, 2592–2597. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36, 2304–2318. [Google Scholar] [CrossRef]
- Dabrowski, A.; Podkoscielny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef]
- Torimoto, T.; Ito, S.; Kuwabata, S.; Yoneyama, H. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environ. Sci. Technol. 1996, 30, 1275–1281. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huang, B.B.; Lou, Z.Z.; Wang, Z.Y.; Meng, X.D.; Liu, Y.Y.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. Immobilization of BiOX (X = Cl, Br) on activated carbon fibers as recycled photocatalysts. Dalton Trans. 2014, 43, 8170–8173. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Y.L.; Shi, J.; Liu, D.; Dong, W.B. Preparation of carbon-supported Bi/Ti composites and its catalytic activity under solar irradiation. Appl. Surf. Sci. 2014, 292, 1077–1082. [Google Scholar] [CrossRef]
- Chandraboss, V.L.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S. An efficient removal of methyl violet from aqueous solution by an AC-Bi/ZnO nanocomposite material. RSC Adv. 2015, 5, 25857–25869. [Google Scholar] [CrossRef]
- Gomis-Berenguer, A.; Celorrio, V.; Iniesta, J.; Fermin, D.J.; Ania, C.O. Nanoporous carbon/WO3 anodes for an enhanced water photooxidation. Carbon 2016, 108, 471–479. [Google Scholar] [CrossRef]
- Zhang, X.W.; Lei, L.C. Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts. J. Hazard. Mater. 2008, 153, 827–833. [Google Scholar] [CrossRef]
- Djellabi, R.; Yang, B.; Wang, Y.; Cui, X.Q.; Zhao, X. Carbonaceous biomass-titania composites with Ti-O-C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chem. Eng. J. 2019, 366, 172–180. [Google Scholar] [CrossRef]
- Chen, G.H.; Wang, Y.; Dai, G.L.; Zhang, F.M. Immobilization of flower-like ZnO on activated carbon fibre as recycled photocatalysts. Res. Chem. Intermed. 2016, 42, 8227–8237. [Google Scholar] [CrossRef]
- Chen, X.Q.; Wu, Z.S.; Gao, Z.Z.; Ye, B.C. Effect of different activated carbon as carrier on the photocatalytic activity of Ag-N-ZnO photocatalyst for methyl orange degradation under visible light irradiation. Nanomaterials 2017, 7, 258. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zhang, X.J.; Tang, Y.C.; Huang, Y.B.; Yu, Z.; Zi, Y.Q. Preparation of Cu2O/AC photocatalysts and their photocatalytic activity in degradation of pyrocatechol. Kinet. Catal. 2011, 52, 672–677. [Google Scholar]
- Hou, J.H.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.G.; Idrees, F.; Cao, C.B. Micro and nano hierachical structures of BiOI/activated carbon for efficient visible-light-photocatalytic reactions. Sci. Rep. 2017, 7, 11665. [Google Scholar] [CrossRef]
- Huang, H.B.; Wang, Y.; Jiao, W.B.; Cai, F.Y.; Shen, M.; Zhou, S.G.; Cao, H.L.; Lu, J.; Cao, R. Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation. ACS Sustain. Chem. Eng. 2018, 6, 7871–7879. [Google Scholar] [CrossRef]
- Murcia-Lopez, S.; Navio, J.A.; Hidalgo, M.C. Role of activated carbon on the increased photocatalytic activity of AC/Bi2WO6 coupled materials. Appl. Catal. A Gen. 2013, 466, 51–59. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.Q.; Zi, J.Z.; Zhou, M.J.; Ye, Z.F.; Li, J.Z.; Guan, Q.F.; Lv, P.; Huo, P.W.; Yan, Y.S. High photocatalytic degradation of tetracycline under visible light with Ag/AgCl/activated carbon composite plasmonic photocatalyst. J. Ind. Eng. Chem. 2016, 35, 83–92. [Google Scholar] [CrossRef]
- Zuo, X.J.; Cao, Y.Q.; Gong, A.J.; Ding, S.L.; Zhang, T.W.; Wang, Y.J. Removal of microcystins by highly efficient photo-catalyst Bi2WO6-activated carbon under simulated light. Water Air Soil Pollut. 2016, 227, 97. [Google Scholar] [CrossRef]
- Biniak, S.; Szymanski, G.; Siedlewski, J.; Swiatkowski, A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35, 1799–1810. [Google Scholar] [CrossRef]
- Li, L.; Quinlivan, P.A.; Knappe, D.R.U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Jia, B.Y.; Duan, L.Y.; Ma, C.L.; Wang, C.M. Characterization of TiO2 loaded on activated carbon fibers and its photocatalytic reactivity. Chin. J. Chem. 2007, 25, 553–557. [Google Scholar] [CrossRef]
- Li, D.N.; Chen, Y.; Yin, F.; Zhu, L.Z.; Li, J.N.; Ma, X.J. Facile synthesis of Mn/N-doped TiO2 on wood-based activated carbon fiber as an efficient visible-light-driven photocatalyst. J. Mater. Sci. 2018, 53, 11671–11683. [Google Scholar] [CrossRef]
- Yao, S.H.; Song, S.P.; Shi, Z.L. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite. Russ. J. Phys. Chem. A 2014, 88, 1066–1070. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhang, K.; Guo, X.L.; Shenb, G.D.; Xiang, J.Y. Synthesis and characterization of N-doped TiO2 Loaded onto activated carbon fiber with enhanced visible-light photocatalytic activity. New J. Chem. 2014, 38, 6139–6146. [Google Scholar] [CrossRef]
- Zhang, C.C.; Han, P.F.; Lu, X.P.; Mao, Q.H.; Qu, J.G.; Li, Y. Preparation and photocatalytic activity characterization of activated carbon fiber-BiVO4 composites. RSC Adv. 2018, 8, 24665–24672. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.F.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Zhu, S.J.; Meng, Q.N.; Wang, L.; Zhang, J.H.; Song, Y.B.; Jin, H.; Zhang, K.; Sun, H.C.; Wang, H.Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013, 52, 3953–3957. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z.Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Li, H.T.; He, X.D.; Kang, Z.H.; Huang, H.; Liu, Y.; Liu, J.L.; Lian, S.Y.; Tsang, C.H.A.; Yang, X.B.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, C.G.; Zhou, Y.J.; Fu, Y.J.; Guo, S.J.; Li, H.; Zhao, S.Q.; Huang, H.; Liu, Y.; Kang, Z.H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal. B Environ. 2017, 216, 114–121. [Google Scholar] [CrossRef]
- Sarma, D.; Majumdar, B.; Sarma, T.K. Carboxyl-functionalized carbon dots as competent visible light photocatalysts for aerobic oxygenation of alkyl benzenes: Role of surface functionality. ACS Sustain. Chem. Eng. 2018, 6, 16573–16585. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- De Jong, K.P.; Geus, J.W. Carbon nanofibers: Catalytic synthesis and applications. Catal. Rev. Eng. 2000, 42, 481–510. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47, 2–22. [Google Scholar] [CrossRef]
- Chen, J.Y.; Li, G.Y.; Huang, Y.; Zhang, H.M.; Zhao, H.J.; An, T.C. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Appl. Catal. B Environ. 2012, 123, 69–77. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, S.J. Effect of incorporation of multiwalled carbon nanotubes on photodegradation efficiency of mesoporous anatase TiO2 spheres. Mater. Chem. Phys. 2017, 186, 261–270. [Google Scholar] [CrossRef]
- Wang, W.D.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Luo, Y.S.; Liu, J.P.; Xia, X.H.; Li, X.Q.; Fang, T.; Li, S.Q.; Ren, Q.F.; Li, J.L.; Jia, Z. Fabrication and characterization of TiO2/short MWNTs with enhanced photocatalytic activity. Mater. Lett. 2007, 61, 2467–2472. [Google Scholar] [CrossRef]
- Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 2009, 47, 3280–3287. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.L.; Jiang, W.F.; Li, Z.Q. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res. 2009, 43, 204–210. [Google Scholar] [CrossRef]
- He, L.F.; Wang, C.D.; Yao, X.L.; Ma, R.G.; Wang, H.K.; Chen, P.R.; Zhang, K. Synthesis of carbon nanotube/mesoporous TiO2 coaxial nanocables with enhanced lithium ion battery performance. Carbon 2014, 75, 345–352. [Google Scholar] [CrossRef]
- Fan, W.G.; Gao, L.; Sun, J. Anatase TiO2-coated multi-wall carbon nanotubes with the vapor phase method. J. Am. Ceram. Soc. 2006, 89, 731–733. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Luo, X.H.; Xu, J.; Xiang, B.; Yu, D.P. Synthesis of TiO2/SiO2 core/shell nanocable arrays. J. Phys. Chem. B 2004, 108, 14866–14869. [Google Scholar] [CrossRef]
- Ma, L.; Chen, A.P.; Lu, J.D.; Zhang, Z.; He, H.B.; Li, C.Z. In situ synthesis of CNTs/Fe-Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology 2014, 14, 24–32. [Google Scholar] [CrossRef]
- Chen, P.R.; Wang, L.D.; Wang, P.; Kostka, A.; Wark, M.; Muhler, M.; Beranek, R. CNT-TiO2-δ composites for improved co-catalyst dispersion and stabilized photocatalytic hydrogen production. Catalysts 2015, 5, 270–285. [Google Scholar] [CrossRef]
- Hlekelele, L.; Franklyn, P.J.; Dziike, F.; Durbach, S.H. TiO2 composited with carbon nanofibers or nitrogen-doped carbon nanotubes synthesized using coal fly ash as a catalyst: Bisphenol-A photodegradation efficiency evaluation. New J. Chem. 2018, 42, 4531–4542. [Google Scholar] [CrossRef]
- Wang, W.; Lin, L.; Yu, D.; Liu, B.J. Study on the photocatalytic performance of BiVO4/Bi2WO6/multi-walled carbon nanotube nanocomposites in one-pot hydrothermal process. J. Nanosci. Nanotechnol. 2018, 18, 7691–7702. [Google Scholar] [CrossRef]
- Li, Z.J.; Kang, W.M.; Han, Z.B.; Yan, J.; Cheng, B.W.; Liu, Y. Hierarchical MnOx@PVDF/MWCNTs tree-like nanofiber membrane with high catalytic oxidation activity. J. Alloy. Compd. 2019, 780, 805–815. [Google Scholar] [CrossRef]
- Ma, D.M.; Zhong, J.B.; Li, J.Z.; Burda, C.; Duan, R. Preparation and photocatalytic performance of MWCNTs/BiOCl: Evidence for the superoxide radical participation in the degradation mechanism of phenol. Appl. Surf. Sci. 2019, 480, 395–403. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.L.; Jiang, W.F. Solar photocatalytic degradation of 2,6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2 composite photocatalysts. Chemosphere 2009, 75, 1105–1111. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhuang, Y.B.; Fu, X.Z. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. J. Phys. Chem. C 2010, 114, 2669–2676. [Google Scholar] [CrossRef]
- Gopannagari, M.; Kumar, D.P.; Park, H.; Kim, E.H.; Bhavani, P.; Reddy, D.A.; Kim, T.K. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 236, 294–303. [Google Scholar] [CrossRef]
- Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A Gen. 2003, 253, 337–358. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Kim, H.Y.; Park, S.J. Ag-ZnO photocatalyst anchored on carbon nanofibers: Synthesis, characterization, and photocatalytic activities. Synth. Met. 2016, 220, 533–537. [Google Scholar] [CrossRef]
- Che, G.; Lakshmi, B.B.; Martin, C.R.; Fisher, E.R.; Ruoff, R.S. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 1998, 10, 260–267. [Google Scholar] [CrossRef]
- Melechko, A.V.; Merkulov, V.I.; McKnight, T.E.; Guillorn, M.A.; Klein, K.L.; Lowndes, D.H.; Simpson, M.L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys. 2005, 97, 041301. [Google Scholar] [CrossRef]
- Feng, L.C.; Xie, N.; Zhong, J. Carbon nanofibers and their composites: A Review of synthesizing, properties and applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef]
- Ci, L.J.; Wei, J.Q.; Wei, B.Q.; Liang, J.; Xu, C.L.; Wu, D.H. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 2001, 39, 329–335. [Google Scholar] [CrossRef]
- Kim, Y.A.; Hayashi, T.; Endo, M.; Kaburagi, Y.; Tsukada, T.; Shan, J.; Osato, K.; Tsuruoka, S. Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method. Carbon 2005, 43, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Ci, L.J.; Li, Y.H.; Wei, B.Q.; Liang, J.; Xu, C.L.; Wu, D.H. Preparation of carbon nanofibers by the floating catalyst method. Carbon 2000, 38, 1933–1937. [Google Scholar] [CrossRef]
- Lu, X.F.; Wang, C.; Wei, Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 2009, 5, 2349–2370. [Google Scholar] [CrossRef]
- Inagaki, M.; Yang, Y.; Kang, F.Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566. [Google Scholar] [CrossRef]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef]
- Seong, D.B.; Son, Y.R.; Park, S.J. A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. J. Solid State Chem. 2018, 266, 196–204. [Google Scholar] [CrossRef]
- Mu, J.B.; Shao, C.L.; Guo, Z.C.; Zhang, M.Y.; Zhang, Z.Y.; Zhang, P.; Chen, B.; Liu, Y.C. In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity. J. Mater. Chem. 2012, 22, 1786–1793. [Google Scholar] [CrossRef]
- Yang, S.; Shao, C.L.; Tao, R.; Li, X.W.; Han, C.H.; Liu, H.Y.; Li, X.H.; Liu, Y.C. Enhanced full-spectrum-response photocatalysis and reusability of MoSe2 via hierarchical n-doped carbon nanofibers as heterostructural supports. ACS Sustain. Chem. Eng. 2018, 6, 14314–14322. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Partoens, B.; Peeters, F.M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 11. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.G.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- An, X.Q.; Yu, J.C. Graphene-based photocatalytic composites. RSC Adv. 2011, 1, 1426–1434. [Google Scholar] [CrossRef]
- Choi, B.K.; Choi, W.K.; Park, S.J.; Seo, M.K. One-pot synthesis of Ag-TiO2/nitrogen-doped graphene oxide nanocomposites and its photocatalytic degradation of methylene blue. J. Nanosci. Nanotechnol. 2018, 18, 6075–6080. [Google Scholar] [CrossRef]
- Kim, T.W.; Park, M.; Kim, H.Y.; Park, S.J. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants. J. Solid State Chem. 2016, 239, 91–98. [Google Scholar] [CrossRef]
- Lee, H.I.; Park, S.J. One-pot synthesis of reduced graphene oxide/anatase titanium dioxide composites for photocatalytic degradation of methylene blue. J. Nanosci. Nanotechnol. 2018, 18, 6173–6179. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yang, H.M.; Park, S.J. Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity. Curr. Appl. Phys. 2018, 18, 163–169. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.J.; Li, Y.M.; Wang, Y.; Li, J.H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. [Google Scholar] [CrossRef]
- Meng, J.C.; Chen, Q.; Lu, J.Q.; Liu, H. Z-scheme photocatalytic CO2 reduction on a heterostructure of oxygen-defective ZnO/reduced graphene oxide/UiO-66-NH2 under visible light. ACS Appl. Mater. Interfaces 2019, 11, 550–562. [Google Scholar] [CrossRef]
- Regulska, E.; Breczko, J.; Basa, A. Pristine and graphene-quantum-dots-decorated spinel nickel aluminate for water remediation from dyes and toxic pollutants. Water 2019, 11, 953. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Kim, H.Y.; Park, S.J. In-situ synthesis of graphene oxide/BiOCl heterostructured nanofibers for visible-light photocatalytic investigation. J. Alloy. Compd. 2016, 686, 106–114. [Google Scholar] [CrossRef]
- Yeh, T.F.; Teng, C.Y.; Chen, S.J.; Teng, H.S. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303. [Google Scholar] [CrossRef]
- Apostolopoulou, V.; Vakros, J.; Kordulis, C.; Lycourghiotis, A. Preparation and characterization of 60 fullerene nanoparticles supported on titania used as a photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2009, 349, 189–194. [Google Scholar] [CrossRef]
- Regulska, E.; Rivera-Nazario, D.M.; Karpinska, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Enhanced photocatalytic performance of porphyrin/phthalocyanine and Bis(4-pyridyl) pyrrolidinofullerene modified titania. Chemistryselect 2017, 2, 2462–2470. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.Y.; Xia, J.; Lin, H.Q.; Miao, M.S. Bubble-wrap carbon: An integration of graphene and fulterenes. Nanoscale 2018, 10, 11328–11334. [Google Scholar] [CrossRef]
- Niu, P.; Zhang, L.L.; Liu, G.; Cheng, H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770. [Google Scholar] [CrossRef]
- Cao, S.W.; Low, J.X.; Yu, J.G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef]
- Wang, X.C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, J.; Zong, R.L.; Zhu, Y.F. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Appl. Catal. B Environ. 2014, 147, 229–235. [Google Scholar] [CrossRef]
- Li, Q.; Xu, D.; Guo, J.N.; Ou, X.; Yan, F. Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 2017, 124, 599–610. [Google Scholar] [CrossRef]
- Kong, W.Q.; Zhang, X.F.; Chang, B.B.; Zhou, Y.N.; Zhang, S.R.; He, G.L.; Yang, B.C.; Li, J.J. Fabrication of B doped g-C3N4/TiO2 heterojunction for efficient photoelectrochemical water oxidation. Electrochim. Acta 2018, 282, 767–774. [Google Scholar] [CrossRef]
- Wu, J.J.; Li, N.; Zhang, X.H.; Fang, H.B.; Zheng, Y.Z.; Tao, X. Heteroatoms binary-doped hierarchical porous g-C3N4 nanobelts for remarkably enhanced visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 2018, 226, 61–70. [Google Scholar] [CrossRef]
- Liu, S.Z.; Sun, H.Q.; Ang, H.M.; Tade, M.O.; Wang, S.B. Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation. J. Colloid Interface Sci. 2016, 476, 193–199. [Google Scholar] [CrossRef]
- Qin, J.Y.; Huo, J.P.; Zhang, P.Y.; Zeng, J.; Wang, T.T.; Zeng, H.P. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 2016, 8, 2249–2259. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Wang, T.T.; Zeng, H.P. Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Appl. Surf. Sci. 2017, 391, 404–414. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B Environ. 2011, 108, 100–107. [Google Scholar] [CrossRef]
- Yan, H.J.; Yang, H.X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloy. Compd. 2011, 509, L26–L29. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.Y.; Liu, F.Y.; Jiang, W.; Zhang, D.D.; Liang, J.L. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Res. 2019, 150, 431–441. [Google Scholar] [CrossRef]
- Chaudhary, D.; Vankar, V.D.; Khare, N. Noble metal-free g-C3N4/TiO2/CNT ternary nanocomposite with enhanced photocatalytic performance under visible-light irradiation via multi-step charge transfer process. Sol. Energy 2017, 158, 132–139. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, J.H.; Hong, Z.H.; Shen, B.; Lin, B.Z.; Gao, B.F. Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production. Phys. Chem. Chem. Phys. 2014, 16, 8106–8113. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, H.B.; Wang, Y.X.; Xie, Y.B.; Xiao, J.D.; Yang, J.; Zhang, Y. High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process. Chemosphere 2018, 201, 206–213. [Google Scholar] [CrossRef]
- Xu, Y.G.; Xu, H.; Wang, L.; Yan, J.; Li, H.M.; Song, Y.H.; Huang, L.Y.; Cai, G.B. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans. 2013, 42, 7604–7613. [Google Scholar] [CrossRef]
- Han, Q.; Wang, B.; Gao, J.; Qu, L.T. Graphitic carbon nitride/nitrogen-rich carbon nanofibers: Highly efficient photocatalytic hydrogen evolution without cocatalysts. Angew. Chem. Int. Ed. 2016, 55, 10849–10853. [Google Scholar] [CrossRef]
- Wu, H.X.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale 2016, 8, 12066–12072. [Google Scholar] [CrossRef]
- Yu, Y.; Bu, Y.F.; Zhong, Q.; Cai, W. Catalytic oxidation of NO by g-C3N4-assisted electrospun porous carbon nanofibers at room temperature: Structure-activity relationship and mechanism study. Catal. Commun. 2016, 87, 62–65. [Google Scholar] [CrossRef]
- Du, A.J.; Sanvito, S.; Li, Z.; Wang, D.W.; Jiao, Y.; Liao, T.; Sun, Q.; Ng, Y.H.; Zhu, Z.H.; Amal, R.; et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 2012, 134, 4393–4397. [Google Scholar] [CrossRef]
- Liao, G.Z.; Chen, S.; Quan, X.; Yu, H.T.; Zhao, H.M. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726. [Google Scholar] [CrossRef]
- Xiang, Q.J.; Yu, J.G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2 production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363. [Google Scholar] [CrossRef]
- Bailon-Garcia, E.; Elmouwahidi, A.; Alvarez, M.A.; Carrasco-Marin, F.; Perez-Cadenas, A.F.; Maldonado-Hodar, F.J. New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B Environ. 2017, 201, 29–40. [Google Scholar] [CrossRef]
- Su, Y.P.; Li, S.; He, D.S.; Yu, D.F.; Liu, F.; Shao, N.N.; Zhang, Z.T. MOF-derived porous ZnO nanocages/rGO/carbon sponge-based photocatalytic microreactor for efficient degradation of water pollutants and hydrogen evolution. ACS Sustain. Chem. Eng. 2018, 6, 11989–11998. [Google Scholar] [CrossRef]
- Hu, J.D.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light. Small 2018, 14, 1800416. [Google Scholar] [CrossRef]
- Wen, J.Q.; Li, X.; Liu, W.; Fang, Y.P.; Xie, J.; Xu, Y.H. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 2015, 36, 2049–2070. [Google Scholar] [CrossRef]
- Etacheri, V.; Michlits, G.; Seery, M.K.; Hinder, S.J.; Pillai, S.C. A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663–1672. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Khedr, T.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Visible light activated carbon and co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep. Purif. Technol. 2017, 173, 258–268. [Google Scholar] [CrossRef]
- Shao, Y.; Cao, C.S.; Chen, S.L.; He, M.; Fang, J.L.; Chen, J.; Li, X.F.; Li, D.Z. Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Appl. Catal. B Environ. 2015, 179, 344–351. [Google Scholar] [CrossRef]
- Zhao, W.R.; Wang, Y.; Yang, Y.; Tang, J.; Yang, Y.A. Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: Preparation, characterization, and photocatalytic properties. Appl. Catal. B Environ. 2012, 115, 90–99. [Google Scholar] [CrossRef]
- Sun, Y.; Murphy, C.J.; Reyes-Gil, K.R.; Reyes-Garcia, E.A.; Lilly, J.P.; Raftery, D. Carbon-doped In2O3 films for photoelectrochemical hydrogen production. Int. J. Hydrog. Energy 2008, 33, 5967–5974. [Google Scholar] [CrossRef]
Photocatalyst | Synthesis Method | Main Precursor | Morphology | Applications | Irradiation Light | Ref. |
---|---|---|---|---|---|---|
TiO2/AC | Ultrasonic-assisted sol-gel | Titanium(IV) n-butoxide, commercial AC | Powder | Reduction of Cr(VI) | PLS-SXE 300 Xe lamp (UV, λ > 400, λ > 420 nm) | [63] |
BiOI/AC | Hydrothermal | Bismuth nitrate, potassium iodide, commercial AC | Powder | Degradation of RhB aqueous solution | 500 W Xe lamp | [67] |
ACF/Bismuth oxyhalides (BiOX, X = Cl, Br) | Solvothermal | Bi(NO3)3·5H2O, 1-hexadecyl-3-methylimidazoli-um bromide, 1-hexadecyl-3-methylimidazoli-um chloride | Fiber | Degradation of RhB and 2,4-Dichlorophenol aqueous solution | 300 W Xe lamp | [58] |
TiO2–MnTiO3/HACF | Biotemplated method | Kapok, bis (ammonium-lactato) titanium-dihydroxide, Mn(NO3)2 | Fiber | Degradation of methylene blue (MB) aqueous solution | 500 W Xe lamp | [35] |
BiVO4/ACF | Hydrothermal immobilization | Bi(NO3)3·5H2O, NH4VO3 | Fiber | Degradation of reactive Black KN–B aqueous solution | 1000 W Xe lamp | [79] |
CdS/CDs | Solvothermal, hydrothermal | Sulfur powder, CdCl2·2.5H2O | Powder | Water splitting | 300 W Xe lamp | [85] |
Carboxyl-functionalized CDs | Microwave irradiation | Dextrose, urea | Powder | Oxidation of alkyl benzenes | 60 W white LED lamp | [86] |
MWCNT/TiO2 | Impregnation | Titanium tetrasiopropoxide, MWCNTs | Powder | Degradation of benzene in the gas phase | Four 4 W UV lamps | [108] |
Pt-ascorbic acid modified CNT/CdS | Acid refluxing, adsorption, chemical reduction | L-ascorbic acid, Chloroplatinic acid solution, cadmium acetate, MWCNTs | Powder | Water splitting | 150 W Xe lamp | [109] |
In2O3/CNFs | Electrospinning, solvothermal | PAN, In(NO3)3·5H2O, CO(NH2)2 | Fiber | Degradation of RB, methyl orange (MO) aqueous solution | 150 W Xe lamp with a UV cut-off filter (λ > 420 nm) | [123] |
MoSe2/HN–CNFs | Electropsinning, in situ polymerization, hydrothermal | PAN, Na2MoO4·2H2O, Se | Fiber | Degradation of RhB, MO, and tetracycline hydrochloride | 300 W Xe lamp | [124] |
O–ZnO/UiO–66–NH2/rGO | Modified Hummers’, solvothermal | Natural graphite powder, Zn(CH3COO)2·2H2O | Powder | Reduction of CO2 | 300 W Xe lamp with a UV cut-off filter (λ > 420 nm) | [135] |
NiAl2O4/GQDs | Pyrolyzing, coprecipitation | Citric acid, ammonium oxalate, Al(NO3)3·9H2O, Ni(NO3)3·6H2O | Powder | Degradation of RhB, MB, quinoline yellow, eriochrome black, phenol, thiram aqueous solution | SUNTEST CPS+ solar simulator | [136] |
BiOCl/GO | Solvothermal, electrospinning | PAN, Bi(NO3)3·5H2O, GO | Fiber | Degradation of RhB | Solar simulator (Sun 2000, ABET) with a UV cut-off filter (λ > 440 nm) | [137] |
NGO–QDs | Heat treatment in NH3, modified Hummers’ method | NH3, GO | Powder | Water splitting | 300 W Xenon lamp with a UV cut-off filter (420 < λ < 800 nm) | [138] |
Bi2TiO4F2/C60 | Solvothermal | Bi(NO3)3·5H2O, TiF4, C60 | Powder | Degradation of RhB | 300 W Xe lamp with a cutoff filter (λ > 420 nm) | [39] |
Bis(4-pyridyl)pyrrolidinofullerene/TiO2 | Sol-gel | 4-(aminomethyl)pyridine, 4-piridinecarboxaldehyde, buckminsterfullerene, Titanium isopropoxide, porphyrin/phthalocyanine | Powder | Degradation of MB and phenol | A SUNTEST CPS+ solar simulator | [140] |
g-C3N4 | Direct pyrolysis | Dicyandiamide, urea | Powder | Degradation of MB | 500 W Xe with a cutoff filter (λ > 420 nm) | [145] |
g-C3N4/CQDs | Hydrothermal | Citric acid, urea | Powder | Degradation of diclofenac | 300 W Xe lamp with a cutoff filter (λ > 400 nm) | [155] |
ZnO/ZIF–8/rGO/Carbon-sponge | Dipping-pyrolysis | Melamine foam, Zn(NO3)2, dimethylimidazole | 3D monolithic | Degradation of RhB aqueous solution | 300 W Xe lamp | [167] |
g-C3N4/GO aerogels | Modified hummer’s method, hydrothermal, freeze drying | Dicyandiamide, graphite powder | 3D monolithic | Decomposition of NO gas | 300 W Xe lamp | [168] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Zhang, Y.; Park, S.-J. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. Materials 2019, 12, 1916. https://doi.org/10.3390/ma12121916
Ge J, Zhang Y, Park S-J. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. Materials. 2019; 12(12):1916. https://doi.org/10.3390/ma12121916
Chicago/Turabian StyleGe, Jianlong, Yifan Zhang, and Soo-Jin Park. 2019. "Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review" Materials 12, no. 12: 1916. https://doi.org/10.3390/ma12121916
APA StyleGe, J., Zhang, Y., & Park, S. -J. (2019). Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. Materials, 12(12), 1916. https://doi.org/10.3390/ma12121916