Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles
Abstract
:1. Introduction
- (1)
- (2)
- Multi-magnetron approach. Up to three individual planar magnetrons were placed into a single aggregation chamber. Depending on the mutual position of the magnetrons, the applied magnetron currents and the sputtered materials, alloy, core-satellite, Janus-like, core@shell or core@shell@shell NPs were produced [97,98,99,100,101].
- (3)
- In-flight coating/modification of NPs. In this case, NPs produced by GAS were modified/coated in-flight in an auxiliary chamber located in between the GAS and the substrate. This method was reported to be effective for oxidation of the surface layer of metallic NPs [102], production of core@shell NPs [103,104,105,106], and NPs decorated by other materials (so-called strawberry-like or core-satellite structures) [107].
2. Materials and Methods
3. Results
3.1. Gas-Phase Fabrication of C:H:N:O Nanoparticles
3.2. Composite Nylon/Cu Target
3.3. System with Two Independent Magnetron
3.4. In-Flight Coating of C:H:N:O Nanoparticles
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Greene, J.E. Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A Vac. Surf. Films 2017, 35, 05C204. [Google Scholar] [CrossRef] [Green Version]
- Waits, R.K. Planar magnetron sputtering. J. Vac. Sci. Technol. 1978, 15, 179–187. [Google Scholar] [CrossRef]
- Musil, J.; Leština, J.; Vlček, J.; Tölg, T. Pulsed dc magnetron discharge for high-rate sputtering of thin films. J. Vac. Sci. Technol. A Vac. Surf. Films 2001, 19, 420–424. [Google Scholar] [CrossRef]
- Kouznetsov, V.; Macák, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999, 122, 290–293. [Google Scholar] [CrossRef]
- Anders, A. Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Technol. 2011, 205, S1–S9. [Google Scholar] [CrossRef] [Green Version]
- Anders, A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef] [Green Version]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Schiller, S.; Goedicke, K.; Reschke, J.; Kirchhoff, V.; Schneider, S.; Milde, F. Pulsed magnetron sputter technology. Surf. Coat. Technol. 1993, 61, 331–337. [Google Scholar] [CrossRef]
- Davidse, P.D.; Maissel, L.I. Dielectric Thin Films through rf Sputtering. J. Appl. Phys. 1966, 37, 574–579. [Google Scholar] [CrossRef]
- Harrop, R.; Harrop, P. Friction of sputtered PTFE films. Thin Solid Films 1969, 3, 109–117. [Google Scholar] [CrossRef]
- Pratt, I.H.; Lausman, T.C. Some characteristics of sputtered polytetrafluoroethylene films. Thin Solid Films 1972, 10, 151–154. [Google Scholar] [CrossRef]
- Biederman, H.; Ojha, S.M.; Holland, L. The properties of fluorocarbon films prepared by r.f. sputtering and plasma polymerization in inert and active gas. Thin Solid Films 1977, 41, 329–339. [Google Scholar] [CrossRef]
- Biederman, H.; Osada, Y. Plasma Polymerisation Processes; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Friedrich, J. Mechanisms of Plasma Polymerization—Reviewed from a Chemical Point of View. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar] [CrossRef]
- Kylián, O.; Choukourov, A.; Biederman, H. Nanostructured plasma polymers. Thin Solid Films 2013, 548, 1–17. [Google Scholar] [CrossRef]
- Thiry, D.; Konstantinidis, S.; Cornil, J.; Snyders, R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films 2016, 606, 19–44. [Google Scholar] [CrossRef]
- Cantini, M.; Rico, P.; Moratal, D.; Salmerón-Sánchez, M. Controlled wettability, same chemistry: Biological activity of plasma-polymerized coatings. Soft Matter 2012, 8, 5575. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; de Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef] [Green Version]
- Nisol, B.; Oldenhove, G.; Preyat, N.; Monteyne, D.; Moser, M.; Perez-Morga, D.; Reniers, F. Atmospheric plasma synthesized PEG coatings: Non-fouling biomaterials showing protein and cell repulsion. Surf. Coat. Technol. 2014, 252, 126–133. [Google Scholar] [CrossRef]
- Inagaki, N.; Kobayashi, N.; Matsushima, M. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures. J. Membr. Sci. 1988, 38, 85–95. [Google Scholar] [CrossRef]
- Bitar, R.; Cools, P.; de Geyter, N.; Morent, R. Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 2018, 448, 168–185. [Google Scholar] [CrossRef]
- Coad, B.R.; Jasieniak, M.; Griesser, S.S.; Griesser, H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Technol. 2013, 233, 169–177. [Google Scholar] [CrossRef]
- Friedrich, J.F.; Mix, R.; Kühn, G. Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal–polymer composites. Surf. Coat. Technol. 2003, 174–175, 811–815. [Google Scholar] [CrossRef]
- Grundmeier, G.; Thiemann, P.; Carpentier, J.; Barranco, V. Tailored thin plasma polymers for the corrosion protection of metals. Surf. Coat. Technol. 2003, 174–175, 996–1001. [Google Scholar] [CrossRef]
- Deilmann, M.; Theiß, S.; Awakowicz, P. Pulsed microwave plasma polymerization of silicon oxide films: Application of efficient permeation barriers on polyethylene terephthalate. Surf. Coat. Technol. 2008, 202, 1911–1917. [Google Scholar] [CrossRef]
- Förch, R.; Zhang, Z.; Knoll, W. Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications. Plasma Process. Polym. 2005, 2, 351–372. [Google Scholar] [CrossRef]
- Brétagnol, F.; Lejeune, M.; Papadopoulou-Bouraoui, A.; Hasiwa, M.; Rauscher, H.; Ceccone, G.; Colpo, P.; Rossi, F. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater. 2006, 2, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, S.; Chevallier, P.; Turgeon, S.; Mantovani, D. Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS. Materials 2010, 3, 1515–1532. [Google Scholar] [CrossRef] [Green Version]
- Choukourov, A.; Gordeev, I.; Arzhakov, D.; Artemenko, A.; Kousal, J.; Kylián, O.; Slavínská, D.; Biederman, H. Does Cross-Link Density of PEO-Like Plasma Polymers Influence their Resistance to Adsorption of Fibrinogen? Plasma Process. Polym. 2012, 9, 48–58. [Google Scholar] [CrossRef]
- Sardella, E.; Gristina, R.; Senesi, G.S.; D’Agostino, R.; Favia, P. Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces. Plasma Process. Polym. 2004, 1, 63–72. [Google Scholar] [CrossRef]
- Drábik, M.; Polonskyi, O.; Kylián, O.; Čechvala, J.; Artemenko, A.; Gordeev, I.; Choukourov, A.; Slavínská, D.; Matolínová, I.; Biederman, H. Super-Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE. Plasma Process. Polym. 2010, 7, 544–551. [Google Scholar] [CrossRef]
- Kuzminova, A.; Shelemin, A.; Kylián, O.; Petr, M.; Kratochvíl, J.; Solař, P.; Biederman, H. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum 2014, 110, 58–61. [Google Scholar] [CrossRef]
- Asadollahi, S.; Profili, J.; Farzaneh, M.; Stafford, L. Development of Organosilicon-Based Superhydrophobic Coatings through Atmospheric Pressure Plasma Polymerization of HMDSO in Nitrogen Plasma. Materials 2019, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, M.; Vasilev, K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials 2019, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D.W.; Stephens, R.B.; Alexander, N.B.; Briggs, R.; Büscher, M.; Cernaianu, M.O.; Choukourov, A.; et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017, 5, e17. [Google Scholar] [CrossRef]
- Margarone, D.; Kim, I.J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I.W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target. Phys. Rev. Spec. Top. Accel. Beams 2015, 18, 071304. [Google Scholar] [CrossRef]
- Choukourov, A.; Hanuš, J.; Kousal, J.; Grinevich, A.; Pihosh, Y.; Slavínská, D.; Biederman, H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum 2006, 80, 923–929. [Google Scholar] [CrossRef]
- Robertson, T.; Morrison, D.T. Electrical properties of r.f. sputtered PTFE. Thin Solid Films 1975, 27, 19–37. [Google Scholar] [CrossRef]
- Lehmann, H.W.; Frick, K.; Widmer, R.; Vossen, J.L.; James, E. Reactive sputtering of PTFE films in argon-CF4 mixtures. Thin Solid Films 1978, 52, 231–235. [Google Scholar] [CrossRef]
- Yamada, Y.; Tanaka, K.; Saito, K. Friction and damage of coatings formed by sputtering polytetrafluoroethylene and polyimide. Surf. Coat. Technol. 1990, 43–44, 618–628. [Google Scholar] [CrossRef]
- Gonon, P.; Sylvestre, A. Dielectric properties of fluorocarbon thin films deposited by radio frequency sputtering of polytetrafluoroethylene. J. Appl. Phys. 2002, 92, 4584–4589. [Google Scholar] [CrossRef]
- Maréchal, N.; Pauleau, Y. Radio frequency sputtering process of a polytetrafluoroethylene target and characterization of fluorocarbon polymer films. J. Vac. Sci. Technol. A Vac. Surf. Films 1992, 10, 477–483. [Google Scholar] [CrossRef]
- Tang, G.; Ma, X.; Sun, M. Composition and chemical structure of ultra-thin a-C:F films deposited by RF magnetron sputtering with high pulsed bias. Diam. Relat. Mater. 2007, 16, 1586–1588. [Google Scholar] [CrossRef]
- Oya, T.; Kusano, E. Characterization of organic polymer thin films deposited by rf magnetron sputtering. Vacuum 2008, 83, 564–568. [Google Scholar] [CrossRef]
- Kylián, O.; Drábik, M.; Polonskyi, O.; Čechvala, J.; Artemenko, A.; Gordeev, I.; Choukourov, A.; Matolínová, I.; Slavínská, D.; Biederman, H. Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene. Thin Solid Films 2011, 519, 6426–6431. [Google Scholar] [CrossRef]
- Li, L.; Jones, P.M.; Hsia, Y.T. Characterization of a nanometer-thick sputtered polytetrafluoroethylene film. Appl. Surf. Sci. 2011, 257, 4478–4485. [Google Scholar] [CrossRef]
- Roy, R.A.; Messier, R.; Krishnaswamy, S.V. Preparation and properties of r.f.-sputtered polymer-metal thin films. Thin Solid Films 1983, 109, 27–35. [Google Scholar] [CrossRef]
- Biederman, H. RF sputtering of polymers and its potential application. Vacuum 2000, 59, 594–599. [Google Scholar] [CrossRef]
- Biederman, H. Organic films prepared by polymer sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films 2000, 18, 1642–1648. [Google Scholar] [CrossRef]
- Uemura, A.; Kezuka, K.; Iwamori, S.; Nishiyama, I. Effects of substrate temperature on the surface of polymer thin films prepared by R.F. sputtering with a polyimide target. Vacuum 2009, 84, 607–611. [Google Scholar] [CrossRef]
- Choukourov, A.; Hanuš, J.; Kousal, J.; Grinevich, A.; Pihosh, Y.; Slavínská, D.; Biederman, H. Plasma polymer films from sputtered polyimide. Vacuum 2006, 81, 517–526. [Google Scholar] [CrossRef]
- Kholodkov, I. Plasma polymers prepared by RF sputtering of polyethylene. Vacuum 2003, 70, 505–509. [Google Scholar] [CrossRef]
- Pihosh, Y.; Biederman, H.; Slavinska, D.; Kousal, J.; Choukourov, A.; Trchova, M.; Mackova, A.; Boldyreva, A. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyethylene or polypropylene. Vacuum 2006, 81, 32–37. [Google Scholar] [CrossRef]
- Hishmeh, G.A.; Barr, T.L.; Sklyarov, A.; Hardcastle, S. Thin polymer films prepared by radio frequency plasma sputtering of polytetrafluoroethylene and polyetherimide targets. J. Vac. Sci. Technol. A Vac. Surf. Films 1996, 14, 1330–1338. [Google Scholar] [CrossRef]
- Stelmashuk, V.; Biederman, H.; Slavínská, D.; Trchová, M.; Hlidek, P. Rf magnetron sputtering of polypropylene. Vacuum 2004, 75, 207–215. [Google Scholar] [CrossRef]
- Hanus, J.; Kousal, J.; Choukourov, A.; Biederman, H.; Slavinska, D. RF magnetron sputtering of poly(propylene) in a mixture of argon and nitrogen. Plasma Process. Polym. 2007, 4, 806–811. [Google Scholar] [CrossRef]
- Kousal, J.; Hanuš, J.; Choukourov, A.; Polonskyi, O.; Biederman, H.; Slavínská, D. In Situ Diagnostics of RF Magnetron Sputtering of Nylon. Plasma Process. Polym. 2009, 6, S803–S807. [Google Scholar] [CrossRef]
- Haberland, H.; Karrais, M.; Mall, M. A new type of cluster and cluster ion source. Z. Phys. D At. Mol. Clust. 1991, 20, 413–415. [Google Scholar] [CrossRef]
- Haberland, H.; Karrais, M. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A Vac. Surf. Films 1992, 10, 3266–3271. [Google Scholar] [CrossRef]
- Hanuš, J.; Steinhartová, T.; Kylián, O.; Kousal, J.; Malinský, P.; Choukourov, A.; Macková, A.; Biederman, H. Deposition of Cu/a-C:H Nanocomposite Films. Plasma Process. Polym. 2016, 13, 879–887. [Google Scholar] [CrossRef]
- Vaidulych, M.; Hanuš, J.; Steinhartová, T.; Kylián, O.; Choukourov, A.; Beranová, J.; Khalakhan, I.; Biederman, H. Deposition of Ag/a-C:H nanocomposite films with Ag surface enrichment. Plasma Process. Polym. 2017, 14, 1600256. [Google Scholar] [CrossRef]
- Kylián, O.; Kratochvíl, J.; Petr, M.; Kuzminova, A.; Slavínská, D.; Biederman, H.; Beranová, J. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 2017, 10, 1750029. [Google Scholar] [CrossRef]
- Petr, M.; Kylián, O.; Hanuš, J.; Kuzminova, A.; Vaidulych, M.; Khalakhan, I.; Choukourov, A.; Slavínská, D.; Biederman, H. Surfaces with Roughness Gradient and Invariant Surface Chemistry Produced by Means of Gas Aggregation Source and Magnetron Sputtering. Plasma Process. Polym. 2016, 13, 663–671. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Kuzminova, A.; Solař, P.; Hanuš, J.; Kylián, O.; Biederman, H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum 2019, 166, 50–56. [Google Scholar] [CrossRef]
- Kylián, O.; Kratochvíl, J.; Hanuš, J.; Polonskyi, O.; Solař, P.; Biederman, H. Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films 2014, 550, 46–52. [Google Scholar] [CrossRef]
- Kuzminova, A.; Beranová, J.; Polonskyi, O.; Shelemin, A.; Kylián, O.; Choukourov, A.; Slavínská, D.; Biederman, H. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf. Coat. Technol. 2016, 294, 225–230. [Google Scholar] [CrossRef]
- Nikitin, D.; Madkour, S.; Pleskunov, P.; Tafiichuk, R.; Shelemin, A.; Hanuš, J.; Gordeev, I.; Sysolyatina, E.; Lavrikova, A.; Ermolaeva, S.; et al. Cu nanoparticles constrain segmental dynamics of cross-linked polyethers: A trade-off between non-fouling and antibacterial properties. Soft Matter 2019, 15, 2884–2896. [Google Scholar] [CrossRef]
- Gracia-Pinilla, M.Á.; Ferrer, D.; Mejía-Rosales, S.; Pérez-Tijerina, E. Size-selected Ag nanoparticles with five-fold symmetry. Nanoscale Res. Lett. 2009, 4, 896–902. [Google Scholar] [CrossRef]
- Polonskyi, O.; Solař, P.; Kylián, O.; Drábik, M.; Artemenko, A.; Kousal, J.; Hanuš, J.; Pešička, J.; Matolínová, I.; Kolíbalová, E.; et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films 2012, 520, 4155–4162. [Google Scholar] [CrossRef]
- Kuzminova, A.; Solař, P.; Kúš, P.; Kylián, O. Double Plasmon Resonance Nanostructured Silver Coatings with Tunable Properties. J. Nanomater. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Dutka, M.V.; Turkin, A.a.; Vainchtein, D.I.; de Hosson, J.T.M. On the formation of copper nanoparticles in nanocluster aggregation source. J. Vac. Sci. Technol. A Vac. Surf. Films 2015, 33, 031509. [Google Scholar] [CrossRef]
- Drache, S.; Stranak, V.; Berg, F.; Hubicka, Z.; Tichy, M.; Helm, C.A.; Hippler, R. Pulsed gas aggregation for improved nanocluster growth and flux. Phys. Status Solidi (A) 2014, 211, 1189–1193. [Google Scholar] [CrossRef]
- Luo, Z.; Woodward, W.H.; Smith, J.C.; Castleman, A.W. Growth kinetics of Al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012, 309, 176–181. [Google Scholar] [CrossRef]
- Drabik, M.; Choukourov, A.; Artemenko, A.; Polonskyi, O.; Kylian, O.; Kousal, J.; Nichtova, L.; Cimrova, V.; Slavinska, D.; Biederman, H. Structure and Composition of Titanium Nanocluster Films Prepared by a Gas Aggregation Cluster Source. J. Phys. Chem. C 2011, 115, 20937–20944. [Google Scholar] [CrossRef]
- Drábik, M.; Choukourov, A.; Artemenko, A.; Kousal, J.; Polonskyi, O.; Solař, P.; Kylián, O.; Matoušek, J.; Pešička, J.; Matolínová, I.; et al. Morphology of Titanium Nanocluster Films Prepared by Gas Aggregation Cluster Source. Plasma Process. Polym. 2011, 8, 640–650. [Google Scholar] [CrossRef]
- Ahadi, A.M.; Zaporojtchenko, V.; Peter, T.; Polonskyi, O.; Strunskus, T.; Faupel, F. Role of oxygen admixture in stabilizing TiO x nanoparticle deposition from a gas aggregation source. J. Nanoparticle Res. 2013, 15, 2125. [Google Scholar] [CrossRef]
- Morel, R.; Brenac, A.; Bayle-Guillemaud, P.; Portement, C.; la Rizza, F. Growth and properties of cobalt clusters made by sputtering gas-aggregation. Eur. Phys. J. D 2003, 24, 287–290. [Google Scholar] [CrossRef]
- Gojdka, B.; Hrkac, V.; Strunskus, T.; Zaporojtchenko, V.; Kienle, L.; Faupel, F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. Nanotechnology 2011, 22, 465704. [Google Scholar] [CrossRef]
- Kylián, O.; Valeš, V.; Polonskyi, O.; Pešička, J.; Čechvala, J.; Solař, P.; Choukourov, A.; Slavínská, D.; Biederman, H. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012, 79, 229–231. [Google Scholar] [CrossRef]
- Kylián, O.; Prokeš, J.; Polonskyi, O.; Čechvala, J.; Kousal, J.; Pešička, J.; Hanuš, J.; Biederman, H. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source. Thin Solid Films 2014, 571, 13–17. [Google Scholar] [CrossRef]
- Bray, K.R.; Jiao, C.Q.; DeCerbo, J.N. Nucleation and growth of Nb nanoclusters during plasma gas condensation. J. Appl. Phys. 2013, 113, 234307. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Qamhieh, N.; Ghamlouche, H.; Thaker, S.; El-Shaer, M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 2010, 107, 034317. [Google Scholar] [CrossRef]
- Acsente, T.; Negrea, R.F.; Nistor, L.C.; Logofatu, C.; Matei, E.; Birjega, R.; Grisolia, C.; Dinescu, G. Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur. Phys. J. D 2015, 69, 161. [Google Scholar] [CrossRef]
- D’Addato, S.; Gragnaniello, L.; Valeri, S.; Rota, A.; di Bona, A.; Spizzo, F.; Panozaqi, T.; Schifano, S.F. Morphology and magnetic properties of size-selected Ni nanoparticle films. J. Appl. Phys. 2010, 107, 104318. [Google Scholar] [CrossRef]
- Nielsen, R.M.; Murphy, S.; Strebel, C.; Johansson, M.; Chorkendorff, I.; Nielsen, J.H. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. J. Nanoparticle Res. 2010, 12, 1249–1262. [Google Scholar] [CrossRef]
- Shelemin, A.; Kylián, O.; Hanuš, J.; Choukourov, A.; Melnichuk, I.; Serov, A.; Slavínská, D.; Biederman, H. Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum 2015, 120, 162–169. [Google Scholar] [CrossRef]
- Polonskyi, O.; Ahadi, A.M.; Peter, T.; Fujioka, K.; Abraham, J.W.; Vasiliauskaite, E.; Hinz, A.; Strunskus, T.; Wolf, S.; Bonitz, M.; et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D 2018, 72, 93. [Google Scholar] [CrossRef]
- Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H. Nylon-sputtered nanoparticles: Fabrication and basic properties. J. Phys. D Appl. Phys. 2012, 45, 495301. [Google Scholar] [CrossRef]
- Drábik, M.; Serov, A.; Kylián, O.; Choukourov, A.; Artemenko, A.; Kousal, J.; Polonskyi, O.; Biederman, H. Deposition of Fluorocarbon Nanoclusters by Gas Aggregation Cluster Source. Plasma Process. Polym. 2012, 9, 390–397. [Google Scholar] [CrossRef]
- Solař, P.; Melnichuk, I.; Artemenko, A.; Polonskyi, O.; Kylián, O.; Choukourov, A.; Slavínská, D.; Biederman, H. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum 2015, 111, 124–130. [Google Scholar] [CrossRef]
- Choukourov, A.; Pleskunov, P.; Nikitin, D.; Titov, V.; Shelemin, A.; Vaidulych, M.; Kuzminova, A.; Solař, P.; Hanuš, J.; Kousal, J.; et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017, 8, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- Choukourov, A.; Shelemin, A.; Pleskunov, P.; Nikitin, D.; Khalakhan, I.; Hanuš, J. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles. J. Phys. D Appl. Phys. 2018, 51, 215304. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Wang, J.-P. Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation. Adv. Mater. 2008, 20, 994–999. [Google Scholar] [CrossRef]
- Vahl, A.; Strobel, J.; Reichstein, W.; Polonskyi, O.; Strunskus, T.; Kienle, L.; Faupel, F. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Gauter, S.; Haase, F.; Solař, P.; Kylián, O.; Kúš, P.; Choukourov, A.; Biederman, H.; Kersten, H. Calorimetric investigations in a gas aggregation source. J. Appl. Phys. 2018, 124. [Google Scholar] [CrossRef]
- Martínez, L.; Díaz, M.; Román, E.; Ruano, M.; Llamosa, P.D.; Huttel, Y. Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances. Langmuir 2012, 28, 11241–11249. [Google Scholar] [CrossRef]
- Llamosa, D.; Ruano, M.; Martínez, L.; Mayoral, A.; Roman, E.; García-Hernández, M.; Huttel, Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 2014, 6, 13483–13486. [Google Scholar] [CrossRef]
- Mayoral, A.; Llamosa, D.; Huttel, Y. A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 2015, 51, 8442–8445. [Google Scholar] [CrossRef]
- Singh, V.; Cassidy, C.; Grammatikopoulos, P.; Djurabekova, F.; Nordlund, K.; Sowwan, M. Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core–Satellite Si–Ag Nanoparticles. J. Phys. Chem. C 2014, 118, 13869–13875. [Google Scholar] [CrossRef]
- Mattei, J.-G.; Grammatikopoulos, P.; Zhao, J.; Singh, V.; Vernieres, J.; Steinhauer, S.; Porkovich, A.; Danielson, E.; Nordlund, K.; Djurabekova, F.; et al. Gas-Phase Synthesis of Trimetallic Nanoparticles. Chem. Mater. 2019, 31, 2151–2163. [Google Scholar] [CrossRef] [Green Version]
- Popok, V.N.; Jeppesen, C.M.; Fojan, P.; Kuzminova, A.; Hanuš, J.; Kylián, O. Comparative study of antibacterial properties of polystyrene films with TiO x and Cu nanoparticles fabricated using cluster beam technique. Beilstein J. Nanotechnol. 2018, 9, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wang, J.P. High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 2005, 87, 1–3. [Google Scholar] [CrossRef]
- Kylián, O.; Kuzminova, A.; Vaydulych, M.; Cieslar, M.; Khalakhan, I.; Hanuš, J.; Choukourov, A.; Slavínská, D.; Biederman, H. Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in-flight plasma polymer coating. Plasma Process. Polym. 2018, 15, 1700109. [Google Scholar] [CrossRef]
- Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D Appl. Phys. 2017, 50, 475307. [Google Scholar] [CrossRef]
- Kretková, T.; Hanuš, J.; Kylián, O.; Solař, P.; Dopita, M.; Cieslar, M.; Khalakhan, I.; Choukourov, A.; Biederman, H. In-flight modification of Ni nanoparticles by tubular magnetron sputtering. J. Phys. D Appl. Phys. 2019, 52, 205302. [Google Scholar] [CrossRef]
- Cassidy, C.; Singh, V.; Grammatikopoulos, P.; Djurabekova, F.; Nordlund, K.; Sowwan, M. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013, 3, 3083. [Google Scholar] [CrossRef] [PubMed]
- Kylián, O.; Hanuš, J.; Choukourov, A.; Kousal, J.; Slavínská, D.; Biederman, H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D Appl. Phys. 2009, 42, 142001. [Google Scholar] [CrossRef]
- Finke, B.; Hempel, F.; Testrich, H.; Artemenko, A.; Rebl, H.; Kylián, O.; Meichsner, J.; Biederman, H.; Nebe, B.; Weltmann, K.-D.; et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011, 205, S520–S524. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Kahoun, D.; Štěrba, J.; Langhansová, H.; Lieskovská, J.; Fojtíková, P.; Hanuš, J.; Kousal, J.; Kylián, O.; Straňák, V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018, 15, 1700160. [Google Scholar] [CrossRef]
- Kovačević, E.; Stefanović, I.; Berndt, J.; Winter, J. Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas. J. Appl. Phys. 2003, 93, 2924–2930. [Google Scholar] [CrossRef]
- Solař, P.; Polonskyi, O.; Olbricht, A.; Hinz, A.; Shelemin, A.; Kylián, O.; Choukourov, A.; Faupel, F.; Biederman, H. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017, 7, 8514. [Google Scholar] [CrossRef] [PubMed]
- Kylián, O.; Kuzminova, A.; Štefaníková, R.; Hanuš, J.; Solař, P.; Kúš, P.; Cieslar, M.; Choukourov, A.; Biederman, H. Silver/plasma polymer strawberry-like nanoparticles produced by gas-phase synthesis. Mater. Lett. 2019, 253, 238–241. [Google Scholar] [CrossRef]
Working Gas | O [at.%] | C [at. %] | N [at. %] | C-C/C-H [%] | C-O/C-N [%] | C=O/N-C=O [%] | O-C=O [%] |
---|---|---|---|---|---|---|---|
Ar | 12 | 76 | 12 | 55 | 37 | 6 | 2 |
N2 | 6 | 64 | 30 | 23 | 62 | 12 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kylián, O.; Shelemin, A.; Solař, P.; Pleskunov, P.; Nikitin, D.; Kuzminova, A.; Štefaníková, R.; Kúš, P.; Cieslar, M.; Hanuš, J.; et al. Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles. Materials 2019, 12, 2366. https://doi.org/10.3390/ma12152366
Kylián O, Shelemin A, Solař P, Pleskunov P, Nikitin D, Kuzminova A, Štefaníková R, Kúš P, Cieslar M, Hanuš J, et al. Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles. Materials. 2019; 12(15):2366. https://doi.org/10.3390/ma12152366
Chicago/Turabian StyleKylián, Ondřej, Artem Shelemin, Pavel Solař, Pavel Pleskunov, Daniil Nikitin, Anna Kuzminova, Radka Štefaníková, Peter Kúš, Miroslav Cieslar, Jan Hanuš, and et al. 2019. "Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles" Materials 12, no. 15: 2366. https://doi.org/10.3390/ma12152366
APA StyleKylián, O., Shelemin, A., Solař, P., Pleskunov, P., Nikitin, D., Kuzminova, A., Štefaníková, R., Kúš, P., Cieslar, M., Hanuš, J., Choukourov, A., & Biederman, H. (2019). Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles. Materials, 12(15), 2366. https://doi.org/10.3390/ma12152366