Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Results
3.1. Effect of HPT on Hardness and Microstructure of Mg-0.2Zn-0.5Ca
3.2. Heat Treatment of HPT-Processed Mg-0.2Zn-0.5Ca
3.3. HPT and Heat Treatment of Mg-0.6Zn-0.5Ca
3.4. DSC of HPT-Processed Mg-Zn-Ca Alloys
3.5. Tensile Strength and Ductility of HPT-Processed and Heat-Treated Mg-Zn-Ca Alloys
3.6. Quenching and Heat Treatment of Mg-0.2Zn-0.5Ca
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Gupta, M.; Meenashisundaram, G.K. Insight into Designing Biocompatible Magnesium Alloys and Composites; Springer: Berlin, Germany, 2015. [Google Scholar]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H. Updates on the research and development of absorbable metals for biomedical applications. Prog. Biomater. 2018, 7, 93–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Gunde, P.; Hänzi, A.C.; Sologubenko, A.S.; Uggowitzer, P.J. High-strength magnesium alloys for degradable implant applications. Mater. Sci. Eng. A 2011, 528, 1047–1054. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res. B 2014, 102, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Zberg, B.; Uggowitzer, P.J.; Löffler, J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, J.; Martinelli, E.; Weinberg, A.M.; Becker, M.; Mingler, B.; Uggowitzer, P.J.; Löffler, J.F. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros. Sci. 2015, 91, 29–36. [Google Scholar] [CrossRef]
- Waizy, H.; Seitz, J.-M.; Reifenrath, J.; Weizbauer, A.; Bach, F.-W.; Meyer-Lindenberg, A.; Denkena, B.; Windhagen, H. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 2013, 48, 39–50. [Google Scholar] [CrossRef]
- Hofstetter, J.; Martinelli, E.; Pogatscher, S.; Schmutz, P.; Povoden-Karadeniz, E.; Weinberg, A.M.; Uggowitzer, P.J.; Löffler, J.F. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 2015, 23, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Zehetbauer, M.; Zhu, Y. (Eds.) Bulk Nanostructured Materials; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Pippan, R.; Scheriau, S.; Hohenwarter, A.; Hafok, M. Advantages and limitations of HPT: A review. Mater. Sci. Forum 2008, 584–586, 16–21. [Google Scholar] [CrossRef]
- Furukawa, M.; Horita, Z.; Nemoto, M.; Langdon, T.G. Processing of metals by equal-channel angular pressing. J. Mater. Sci. 2001, 36, 2835–2843. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, O. A mechanistic understanding of the formability of magnesium: Examining the role of temperature on the deformation mechanisms. Mater. Sci. Forum 2003, 419–422, 177–188. [Google Scholar] [CrossRef]
- Lin, J.; Ren, W.; Wang, Q.; Ma, L.; Chen, Y. Influence of grain size and texture on the yield strength of Mg alloys processed by severe plastic deformation. Adv. Mater. Sci. Eng. 2014, 2014, 356572. [Google Scholar] [CrossRef]
- Suwas, S.; Gottstein, G.; Kumar, R. Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium. Mater. Sci. Eng. A 2007, 471, 1–14. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Száraz, Z.; Trojanová, Z.; Lukáč, P.; Langdon, T.G. Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing. Scr. Mater. 2010, 63, 504–507. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J. Mater. Sci. 2010, 45, 4827–4836. [Google Scholar] [CrossRef]
- Ding, S.X.; Chang, C.P.; Kao, P.W. Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metall. Mater. Trans. A 2009, 40, 415–425. [Google Scholar] [CrossRef]
- Figueiredo, R.; Aguilar, M.; Cetlin, P.; Langdon, T. Processing magnesium alloys by severe plastic deformation. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012171. [Google Scholar] [CrossRef] [Green Version]
- Fintová, S.; Kunz, L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 2015, 42, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Bryła, K.; Krystian, M.; Horky, J.; Mingler, B.; Mroczka, K.; Kurtyka, P.; Lityńska-Dobrzyńska, L. Improvement of strength and ductility of an EZ magnesium alloy by applying two different ECAP concepts to processable initial states. Mater. Sci. Eng. A 2018, 737, 318–327. [Google Scholar] [CrossRef]
- Cheng, W.; Tian, L.; Ma, S.; Bai, Y.; Wang, H. Influence of equal channel angular pressing passes on the microstructures and tensile properties of Mg-8Sn-6Zn-2Al alloy. Materials 2017, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.; Vasilev, E.; Kopylov, V.I.; Linderov, M.; Brilevesky, A.; Merson, D. High performance fine-grained biodegradable Mg-Zn-Ca alloys processed by severe plastic deformation. Metals 2019, 9, 186. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, A.; Jiang, J.; Lu, F.; Jian, W.; Song, D.; Zhu, Y.T. Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging. Mater. Sci. Eng. A 2013, 588, 329–334. [Google Scholar] [CrossRef]
- Kulyasova, O.; Islamgaliev, R.; Mingler, B.; Zehetbauer, M. Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 2009, 503, 176–180. [Google Scholar] [CrossRef]
- Haslinger, K.; Bammer, M.; Mingler, B. Characterization of new biodegradable magnesium-alloys. Biomed. Eng./Biomed. Tech. 2013, 58 (Suppl. 1). [Google Scholar] [CrossRef]
- Lukáč, P.; Kocich, R.; Greger, M.; Padalka, O.; Száraz, Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kovove Mater. 2007, 45, 115–120. [Google Scholar]
- Beausir, B.; Suwas, S.; Tóth, L.S.; Neale, K.W.; Fundenberger, J.-J. Analysis of texture evolution in magnesium during equal channel angular extrusion. Acta Mater. 2008, 56, 200–214. [Google Scholar] [CrossRef]
- Yamashita, A.; Horita, Z.; Langdon, T.G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A 2001, 300, 142–147. [Google Scholar] [CrossRef]
- Krystian, M.; Zehetbauer, M.J.; Kropik, H.; Mingler, B.; Krexner, G. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J. Alloys Compd. 2011, 509, S449–S455. [Google Scholar] [CrossRef]
- Qiao, X.G.; Zhao, Y.W.; Gan, W.M.; Chen, Y.; Zheng, M.Y.; Wu, K.; Gao, N.; Starink, M.J. Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature. Mater. Sci. Eng. A 2014, 619, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Bonarski, B.J.; Schafler, E.; Mingler, B.; Skrotzki, W.; Mikulowski, B.; Zehetbauer, M.J. Texture evolution of Mg during high-pressure torsion. J. Mater. Sci. 2008, 43, 7513–7518. [Google Scholar] [CrossRef]
- Edalati, K.; Yamamoto, A.; Horita, Z.; Ishihara, T. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 2011, 64, 880–883. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Zhu, S.J.; Wang, L.G.; Guo, R.M.; Yue, G.C.; Guan, S.K. Microstructures and degradation mechanism in simulated body fluid of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Mater. Des. 2016, 96, 54–62. [Google Scholar] [CrossRef]
- Kulyasova, O.B.; Islamgaliev, R.K.; Zhao, Y.; Valiev, R.Z. Enhancement of the mechanical properties of an Mg–Zn–Ca alloy using high-pressure torsion. Adv. Eng. Mater. 2015, 17, 1738–1741. [Google Scholar] [CrossRef]
- Kocich, R.; Kunčická, L.; Král, P.; Lowe, T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016, 90, 1092–1099. [Google Scholar] [CrossRef]
- Čížek, J.; Procházka, I.; Smola, B.; Stulková, I.; Kužel, R.; Matěj, Z.; Cherkaska, V.; Islamgaliev, R.K.; Kulyasova, O. Microstructure and thermal stability of ultra fine grained Mg-based alloys prepared by high-pressure torsion. Mater. Sci. Eng. A 2007, 462, 121–126. [Google Scholar] [CrossRef]
- Čížek, J.; Procházka, I.; Smola, B.; Stulíková, I.; Očenášek, V.; Islamgaliev, R.K.; Kulyasova, O. The enhanced kinetics of precipitation effects in ultra fine grained Mg alloys prepared by high pressure torsion. Defect Diffus. Forum 2008, 273–276, 75–80. [Google Scholar] [CrossRef]
- Hänzi, A.C.; Dalla Torre, F.H.; Sologubenko, A.S.; Gunde, P.; Schmid-Fetzer, R.; Kuehlein, M.; Löffler, J.F.; Uggowitzer, P.J. Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 2009, 89, 377–390. [Google Scholar] [CrossRef]
- Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A.M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM 2014, 66, 566–572. [Google Scholar] [CrossRef]
- Miller, M.K.; Cerezo, A.; Hetherington, M.G.; Smith, G.D.W. Atom Probe Field Ion Microscopy; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Horky, J. Investigation of the Static and Dynamic Mechanical Properties of Nanostructured Cu and Cu-Al Alloys Processed by High-Pressure Torsion. Ph.D. Thesis, University of Vienna, Vienna, Austria, 2015. [Google Scholar]
- Schneider, S.C.; Gautam, Y.; Zagar, B. Application of a locally operating laser-speckle strain sensor. IEEE Trans. Instrum. Meas. 2003, 52, 1025–1029. [Google Scholar] [CrossRef]
- Hofstetter, J. Development of High-Strength Low-Alloy (HSLA) Magnesium Alloys for Biomedical Application. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2015. [Google Scholar]
- Hofstetter, J.; Rüedi, S.; Baumgartner, I.; Kilian, H.; Mingler, B.; Povoden-Karadeniz, E.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg-Zn-Ca alloys. Acta Mater. 2015, 98, 423–432. [Google Scholar] [CrossRef]
- Werbach, K. Mechanisms of Hardening in Biodegradable Mg and Mg-Alloys through Different Thermal and Mechanical Processing Routes. Master’s Thesis, University of Vienna, Vienna, Austria, 2016. [Google Scholar]
- Marquis, E.A.; Hyde, J.M. Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng. R 2010, 69, 37–62. [Google Scholar] [CrossRef]
- Nie, J.-F. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Embury, J.D. Plastic flow in dispersion hardened materials. Metall. Trans. A 1985, 16, 2191–2200. [Google Scholar] [CrossRef]
- Shen, J.H.; Li, Y.; Wei, Q. Statistic derivation of Taylor factors for polycrystalline metals with application to pure magnesium. Mater. Sci. Eng. A 2013, 582, 270–275. [Google Scholar] [CrossRef]
- Avedesian, M.; Baker, H. (Eds.) Magnesium and Magnesium Alloys; ASM International: Geauga County, OH, USA, 1999. [Google Scholar]
- Bamberger, M.; Levi, G.; Vander Sande, J.B. Precipitation hardening in Mg-Ca-Zn alloys. Metall. Mater. Trans. A 2006, 37, 481–487. [Google Scholar] [CrossRef]
- Sauvage, X.; Ganeev, A.; Ivanisenko, Y.; Enikeev, N.; Murashkin, M.; Valiev, R. Grain boundary segregation in UFG alloys processed by severe plastic deformation. Adv. Eng. Mater. 2012, 14, 968–974. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y.; Kazykhanova, V.U.; Sauvage, X. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.D.; Schwarz, R.B.; Feng, S.; Swadener, J.G.; Huang, J.Y.; Tang, M.; Zhang, J.; Vogel, S.C.; Zhao, Y. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 2007, 55, 5007–5013. [Google Scholar] [CrossRef]
- Renk, O.; Hohenwarter, A.; Schuh, B.; Li, J.H.; Pippan, R. Hardening by annealing: Insights from different alloys. IOP Conf. Ser. Mater. Sci. Eng. 2015, 89, 012043. [Google Scholar] [CrossRef]
- Renk, O.; Hohenwarter, A.; Eder, K.; Kormout, K.S.; Cairney, J.M.; Pippan, R. Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary? Scr. Mater. 2015, 95, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hansen, N.; Tsuji, N. Hardening by annealing and softening by deformation in nanostructured metals. Science 2006, 312, 249–251. [Google Scholar] [CrossRef]
- Ma, E.; Shen, T.D.; Wu, X.L. Nanostructure metals: Less is more. Nat. Mater. 2006, 5, 515–516. [Google Scholar] [CrossRef]
- Setman, D.; Schafler, E.; Korznikova, E.; Zehetbauer, M.J. The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater. Sci. Eng. A 2008, 493, 116–122. [Google Scholar] [CrossRef]
- Kotzurek, J.A.; Sprengel, W.; Krystian, M.; Simic, S.; Pölt, P.; Hohenwarter, A.; Pippan, R.; Würschum, R. Structural anisotropy in equal-channel angular extruded nickel revealed by dilatometric study of excess volume. Int. J. Mater. Res. 2017, 108, 81–88. [Google Scholar] [CrossRef]
- Ungár, T.; Schafler, E.; Hanák, P.; Bernstorff, S.; Zehetbauer, M. Vacancy production during plastic deformation in copper determined by in situ X-ray diffraction. Mater. Sci. Eng. A 2007, 462, 398–401. [Google Scholar] [CrossRef]
- Setman, D.; Kerber, M.; Bahmanpour, H.; Horky, J.; Scattergood, R.O.; Koch, C.C.; Zehetbauer, M.J. Nature and density of lattice defects in ball milled nanostructured copper. Mech. Mater. 2013, 67, 59–64. [Google Scholar] [CrossRef]
- Zehetbauer, M. Effects of non-equilibrium vacancies on strengthening. Key Eng. Mater. 1994, 97–98, 287–306. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Elsevier: Amsterdam, The Netherlands, 2011; p. 56. [Google Scholar]
- Hampshire, J.M.; Hardie, D. Hardening of pure magnesium by lattice defects. Acta Metall. 1974, 22, 657–663. [Google Scholar] [CrossRef]
- Kirchner, H.O.K. Loop hardening of hexagonal metals. Z. Metallkunde 1976, 67, 525–532. [Google Scholar]
- Kotzurek, J.A.; Steyskal, E.-M.; Oberdorfer, B.; Hohenwarter, A.; Pippan, R.; Sprengel, W.; Würschum, R. Direct measurement of vacancy relaxation by dilatometry. Appl. Phys. Lett. 2016, 109, 021906. [Google Scholar] [CrossRef] [Green Version]
- Setman, D.; Kerber, M.; Schafler, E.; Zehetbauer, M. Activation enthalpies of deformation-induced lattice defects in severe plastic deformation nanometals measured by differential scanning calorimetry. Metall. Mater. Trans. A 2010, 41, 810–815. [Google Scholar] [CrossRef]
- Haasen, P.; Mordike, B.L. Physical Metallurgy, 3rd ed.; Cambridge University Press: Cambridge, UK, 1996; Chapter 10. [Google Scholar]
- Cengeri, P.; Kerber, M.B.; Schafler, E.; Zehetbauer, M.J.; Setman, D. Strengthening during heat treatment of HPT processed copper and nickel. Mater. Sci. Eng. A 2019, 742, 124–131. [Google Scholar] [CrossRef]
- Divinski, S.V.; Reglitz, G.; Golovin, I.S.; Peterlechner, M.; Lapovok, R.; Estrin, Y.; Wilde, G. Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing. Acta Mater. 2015, 82, 11–21. [Google Scholar] [CrossRef]
- Su, L.H.; Lu, C.; Tieu, A.K.; He, L.Z.; Zhang, Y.; Wexler, D. Vacancy-assisted hardening in nanostructured metals. Mater. Lett. 2011, 65, 514–516. [Google Scholar] [CrossRef]
- Huang, Y.; Figueiredo, R.B.; Langdon, T.G. Effect of HPT processing temperature on strength of a Mg-Al-Zn alloy. Rev. Adv. Mater. Sci. 2012, 31, 129–137. [Google Scholar]
- Hashimoto, N.; Wakai, E.; Robertson, J.P. Relationship between hardening and damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR. J. Nucl. Mater. 1999, 273, 95–101. [Google Scholar] [CrossRef]
- Holmes, J.J.; Robbins, R.E.; Brimhall, J.L. Effect of fast reactor irradiation on the tensile properties of 304 stainless steel. J. Nucl. Mater. 1969, 32, 330–339. [Google Scholar] [CrossRef]
- Mingler, B.; Karnthaler, H.P. Radiation damage during HRTEM studies in pure Al and Al alloys. Int. J. Mater. Res. 2006, 97, 1041–1045. [Google Scholar] [CrossRef]
Condition | Hardness [HV 0.05] |
---|---|
HPT (2 rot) | 83.0 ± 3.8 HV |
HPT (2 rot) + HT (1 h/142 °C) | 111.1 ± 3.5 HV |
HPT (2 rot) + HT (1 h/142 °C) + HPT (2 rot) | 86.6 ± 4.6 HV |
HPT (2 rot) + HT (1 h/142 °C) + HPT (2 rot) + HT (1 h/142 °C) | 104.6 ± 3.7 HV |
Mg-0.2Zn-0.5Ca | Condition | σ0.2 [MPa] | UTS [MPa] | ϵunif. [%] | ϵtotal [%] |
as-extruded | 64 ± 5 | 184 ± 11 | 15 ± 5 | 16 ± 5 | |
HPT (2 rot) | 158 ± 9 | 242 ± 3 | 4.3 ± 1.0 | 5.3 ± 1.6 | |
HPT (2 rot) + 1 h/142 °C | 237 ± 10 | 308 ± 20 | 1.0 ± 0.6 | 1.1 ± 0.7 | |
Mg-0.6Zn-0.5Ca | Condition | σ0.2 [MPa] | UTS [MPa] | ϵunif. [%] | ϵtotal [%] |
as-extruded | 117 ± 5 | 237 ± 3 | 14 ± 2 | 15 ± 3 | |
HPT (2 rot) | 194 ± 8 | 247 ± 11 | 1.4 ± 0.6 | 1.4 ± 0.6 | |
HPT (2 rot) + 1 h/190 °C | 216 ± 16 | 238 ± 33 | 0.4 ± 0.4 | 0.4 ± 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horky, J.; Ghaffar, A.; Werbach, K.; Mingler, B.; Pogatscher, S.; Schäublin, R.; Setman, D.; Uggowitzer, P.J.; Löffler, J.F.; Zehetbauer, M.J. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials 2019, 12, 2460. https://doi.org/10.3390/ma12152460
Horky J, Ghaffar A, Werbach K, Mingler B, Pogatscher S, Schäublin R, Setman D, Uggowitzer PJ, Löffler JF, Zehetbauer MJ. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials. 2019; 12(15):2460. https://doi.org/10.3390/ma12152460
Chicago/Turabian StyleHorky, Jelena, Abdul Ghaffar, Katharina Werbach, Bernhard Mingler, Stefan Pogatscher, Robin Schäublin, Daria Setman, Peter J. Uggowitzer, Jörg F. Löffler, and Michael J. Zehetbauer. 2019. "Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment" Materials 12, no. 15: 2460. https://doi.org/10.3390/ma12152460
APA StyleHorky, J., Ghaffar, A., Werbach, K., Mingler, B., Pogatscher, S., Schäublin, R., Setman, D., Uggowitzer, P. J., Löffler, J. F., & Zehetbauer, M. J. (2019). Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials, 12(15), 2460. https://doi.org/10.3390/ma12152460