Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review
Abstract
:1. Introduction
2. Dye Solar Sensitive Cells
2.1. Background
2.2. Components of a DSSC
2.2.1. Photoanode
2.2.2. Dye Sensitizer Layer
2.2.3. Electrolyte
2.2.4. Counter-Electrode
2.3. Working Principle
2.4. Applications
3. Electrospinning Technique
3.1. Parameters and Conditions of Electrospinning
3.2. Polymeric Solution Used to Produce the Photovoltaic Effect
3.3. Fiber Morphology Characteristics
4. Electrospinning Applied to DSSC
4.1. Photoanodes
4.2. Counter Electrode
4.3. Electrolyte
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
Abbreviation | Description |
ATN | Ag-doped TiO2 nanofiber |
µs | Microsecond |
CA | Cellulose acetate |
CB | Conduction band |
CE | Counter electrode |
CF | Trichloromethane |
CH4N2S | Thiourea |
CHCl3 | Chloroform |
(CH3)2CO | Acetone |
CNFs | Carbon nanofibers |
Co (CH3COOH)2 . 4H2O | Cobalt acetate tetrahydrate |
Co-TiC | Cobalt-titanium carbide |
Cu2ZnSnS4 | Sulfide kesterite |
CuCl2 | Copper (II) Chloride |
DMF | Dimethylformamide |
DMSO | Dimethyl Sulfoxide |
DSSC | Dye sensitized solar cells |
Eredox | Redox potential |
EtOH | Ethanol |
Fe (NO3)2 | Iron(II) nitrate |
FF | Fill factor |
fs | Femtosecond |
FTO | Fluoride doped tin oxide |
GO | Graphene oxide |
H2PtCl6 | Chloroplatinic acid |
HAc | Acetic acid |
HCOOH | Formic acid |
HOMO | Highest occupied molecular orbital |
InCl3 | Indium (III) Chloride |
Jsc | Short circuit current density |
LiCl | Lithium chloride |
LUMO | Lowest unoccupied molecular orbital |
M+2(NO3)2. 6H2O | M= Ni, Co nickel or Cobalt nitrate hexahydrate |
ms | Millisecond |
η | Energy conversion efficiency |
Ni (AcAc)2 | Nickel (II) acetylacetonate |
NiCo2S4 | Nickel cobalt sulfide |
ns | Nanosecond |
NMP | N-methyl-2-pyrrolidone |
PAN | Poly (acrylonitrile) |
ps | Picosecond |
PMMA | Poly (methyl metacrylate) |
PS | Poly (styrene) |
PVA | Poly (vinyl acetate) |
PVDF | Poly (vinyl idene fluoride) |
PVA | Poly (vinyl acetate) |
PVP | Poly (vinyl pyrrolidone) |
RuCl3·xH2O | Ruthenium (III) Chloride |
SnCl4·5H2O | Tin(IV) Chloride Pentahydrate |
TBT | Tetra-butyl titanate |
TCO | Transparent conductive oxide substrate |
TEOS | Tetraethyl orthosilicate |
Ti-Gr | Titanium with graphene powder |
Ti(Iso) | Titanium isopropoxide |
TiC | Titanium carbide |
Voc | Open circuit voltage |
ZnCl2 | Zinc(II) Chloride |
ZA | Zirconium acetate |
References
- Bagher, A.M.; Vahid, M.M.A.; Mohsen, M. Types of Solar Cells and Application. Am. J. Opt. Photon. 2015, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cao, G. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 2011, 6, 91–109. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Faccio, R.; Fernandez-Werner, L.; Pardo, H.; Mombrú, Á.W. Current Trends in Materials for Dye Sensitized Solar Cells. Recent Pat. Nanotechnol. 2011, 5, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Wan, T.; Ramakrishna, S.; Liu, Y. Recent progress in electrospinning TiO2 nanostructured photo-anode of dye-sensitized solar cells. J. Appl. Polym. Sci. 2018, 135, 45649. [Google Scholar] [CrossRef]
- Mozaffari, S.; Nateghi, M.R.; Zarandi, M.B. An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 71, 675–686. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. Electrospinning of Nanofibers and Their Applications for Energy Devices. J. Nanomater. 2015, 16, 122. [Google Scholar] [CrossRef]
- Mingsukang, M.A. Third-Generation-Sensitized Solar Solar Cells. In Nanostructured Solar Cells; Mohd Hamdi Buraidah and Abdul Kariem Arof ED1; Das, N., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Yeoh, M.-E.; Chan, K.-Y. Recent advances in photo-anode for dye-sensitized solar cells: A review. Int. J. Energy Res. 2017, 41, 2446–2467. [Google Scholar] [CrossRef]
- Parisi, M.L.; Maranghi, S.; Basosi, R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach. Renew. Sustain. Energy Rev. 2014, 39, 124–138. [Google Scholar] [CrossRef]
- Al-alwani, M.A.M.; Ludin, N.A. Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation. Renew. Sustain. Energy Rev. 2016, 65, 183–213. [Google Scholar] [CrossRef]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—A review. Renew. Sustain. Energy Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Suhaimi, S.; Shahimin, M.M.; Alahmed, Z.A.; Chyský, J.; Reshak, A.H. Materials for Enhanced Dye-sensitized Solar Cell Performance: Electrochemical Application. Int. J. Electrochem. Sci. 2015, 10, 2859–2871. [Google Scholar]
- Shelke, R.S.; Thombre, S.B.; Patrikar, S.R. Status and Perspectives of Dyes Used in Dye Sensitized Solar Cells. Int. J. Renew. Energy Resour. 2013, 3, 12–19. [Google Scholar]
- Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162. [Google Scholar] [CrossRef]
- Birel, Ö.; Nadeem, S.; Duman, H. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): A Review. J. Fluoresc. 2017, 27, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Selim, Y. Factors Affect Dye Sensitized Solar Cells performance. Renew. Energy Sustain. Dev. 2017, 3, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Chandra, K.A.; Gill, S.S. Recent Progress in Dye Sensitized Solar Cells. Int. J. Adv. Res. Ideas Innov. Technol. 2017, 3, 77–85. [Google Scholar]
- Grätzel, M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. Res. Appl. 2000, 8, 171–185. [Google Scholar] [CrossRef]
- Chaitanya, K.; Ju, X.-H.; Heron, B.M. Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 2014, 4, 26621–26634. [Google Scholar] [CrossRef]
- Dürr, M.; Rosselli, S.; Yasuda, A.A.; Nelles, G. Band-Gap Engineering of Metal Oxides for Dye-Sensitized Solar Cells. J. Phys. Chem. B 2006, 110, 21899–21902. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.; Mohanty, S.P.; Kumar, P.; Naduvath, J.; Gondane, V.; Lekha, P.; Das, J.; Narula, H.K.; Mallick, S.; Bhargava, P. Dye Sensitized Solar Cells: A Review. Trans. Indian Ceram. Soc. 2012, 71, 1–16. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Buzgo, M.; Mickova, A.; Rampichova, M.; Doupnik, M. Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. Core-Shell Nanostructures Drug Deliv. Theranostics 2018, 325–347. [Google Scholar]
- Villarreal-Gómez, L.J.; Cornejo-Bravo, J.M.; Vera-Graziano, R.; Grande, D. Electrospinning as a powerful technique for biomedical applications: A critically selected survey. J. Biomater. Sci. Polym. Ed. 2016, 27, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Khan, S. Electrospinning Polymer Nanofibers-Electrical and Optical Characterization. Ph.D. Thesis, Ohio University, Athens, OH, USA, 2007. [Google Scholar]
- Ewaldz, E.; Patel, R.; Banerjee, M.; Brettmann, B.K. Material selection in electrospinning microparticles. Polymer 2018, 153, 529–537. [Google Scholar] [CrossRef]
- Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D.J.; Roziere, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785. [Google Scholar] [CrossRef]
- Salam, Z.; Vijayakumar, E.; Subramania, A.; Sivasankar, N.; Mallick, S. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2015, 143, 250–259. [Google Scholar] [CrossRef]
- Kim, I.-D.; Hong, J.-M.; Lee, B.H.; Kim, D.Y.; Jeon, E.-K.; Choi, D.-K.; Yang, D.-J. Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Appl. Phys. Lett. 2007, 91, 163109. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, T.; Thavasi, V.; Ramakrishna, S. A first report on the fabrication of vertically aligned anatase TiO2 nanowires by electrospinning: Preferred architecture for nanostructured solar cells. Energy Environ. Sci. 2011, 4, 2807–2812. [Google Scholar] [CrossRef]
- Le Viet, A.; Jose, R.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishna, S. Nb2O5 Photoelectrodes for Dye-Sensitized Solar Cells: Choice of the Polymorph. J. Phys. Chem. C 2010, 114, 21795–21800. [Google Scholar] [CrossRef]
- Motlak, M.; Barakat, N.A.M.; Akhtar, M.S.; Hamza, A.M. Influence of GO incorporation in TiO2 nano fi bers on the electrode ef fi ciency in dye-sensitized solar cells. Ceram. Int. 2015, 41, 1205–1212. [Google Scholar] [CrossRef]
- Li, F.; Wang, G.; Jiao, Y.; Li, J.; Xie, S. Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers. J. Alloys Compd. 2014, 611, 19–23. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Lu, B.; Chen, L.; Wang, Y.; Teng, F.; Wang, J.; Zhang, Z.; Pan, X.; Xie, E. A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells. Nanoscale 2012, 4, 3475–3481. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Song, L.; Xiong, J.; Yuan, Y.; Wang, L.; Xi, Z.; Jin, D.; Chen, J. TiO2/Nb2O5 core–sheath nanofibers film: Co-electrospinning fabrication and its application in dye-sensitized solar cells. Electrochem. Commun. 2012, 25, 46–49. [Google Scholar] [CrossRef]
- Jin, E.M.; Zhao, X.G.; Park, J.-Y.; Gu, H.-B. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode. Nanoscale Res. Lett. 2012, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.M.; Park, J.-Y.; Zhao, X.G.; Lee, I.-H.; Jeong, S.M.; Gu, H.-B. Photovoltaic properties of TiO2–ZrO2 fiber composite electrodes for dye-sensitized solar cells. Mater. Lett. 2014, 126, 281–284. [Google Scholar] [CrossRef]
- Madhavan, A.A.; Kalluri, S.; Chacko, D.K.; Arun, T.A.; Nagarajan, S.; Subramanian, K.R.V.; Nair, A.S.; Nair, S.V.; Balakrishnan, A. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2012, 2, 13032–13037. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, P.; Wu, Y.; Mhaisalkar, S.G.; Ramakrishna, S. Electrospun conductive polyaniline–polylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. RSC Adv. 2012, 2, 652–657. [Google Scholar] [CrossRef]
- Yousef, A.; Brooks, R.M.; El-Newehy, M.H.; Al-Deyab, S.S.; Kim, H.Y. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: Active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells. Int. J. Hydrog. Energy 2017, 42, 10407–10415. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, P.S.; Hong, C.K. Low-Cost Electrospun Highly Crystalline Kesterite Cu 2 ZnSnS 4 Nanofiber Counter Electrodes for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Saranya, K.; Subramania, A.; Sivasankar, N.; Mallick, S. Electrospun TiC embedded CNFs as a low cost platinum-free counter electrode for dye-sensitized solar cell. Mater. Res. Bull. 2016, 75, 83–90. [Google Scholar] [CrossRef]
- Rameez, M.; Saranya, K.; Subramania, A.; Sivasankar, N.; Mallick, S. Bimetal (Ni–Co) nanoparticles-incorporated electrospun carbon nanofibers as an alternative counter electrode for dye-sensitized solar cells. Appl. Phys. A 2016, 122, 1–10. [Google Scholar] [CrossRef]
- Saranya, K.; Sivasankar, N.; Subramania, A. Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv. 2015, 5, 43611–43619. [Google Scholar] [CrossRef]
- An, G.-H.; An, H.; Ahn, H.-J. Ruthenium nanofibers as efficient counter electrodes for dye-sensitized solar cells. J. Electroanal. Chem. 2016, 775, 280–285. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, L.; Zhang, P.; Ren, X.; Li, Y.; He, T. Electrospun NiCo2S4 with extraordinary electrocatalytic activity as counter electrodes for dye-sensitized solar cells. J. Solid State Electrochem. 2017, 21, 3579–3588. [Google Scholar] [CrossRef]
- He, J.; Zhou, M.; Wang, L.; Zhao, S.; Wang, Q.; Ding, B.; Cui, S. Electrospinning in Situ Synthesis of Graphene-Doped Porous Copper Indium Disulfide/Carbon Composite Nanofibers for Highly Efficient Counter Electrode in Dye-Sensitized Solar Cells. Electrochim. Acta 2016, 215, 626–636. [Google Scholar] [CrossRef]
- Aboagye, A.; Elbohy, H.; Kelkar, A.D.; Qiao, Q.; Zai, J.; Qian, X.; Zhang, L. Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 2015, 11, 550–556. [Google Scholar] [CrossRef]
- Joshi, P.; Zhou, Z.; Poudel, P.; Thapa, A.; Wu, X.-F.; Qiao, Q. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells. Nanoscale 2012, 4, 5659–5664. [Google Scholar] [CrossRef]
- Dissanayake, S.; Dissanayake, M.; Seneviratne, V.; Senadeera, G.; Thotawattage, C. Performance of Dye Sensitized Solar Cells Fabricated with Electrospun Polymer Nanofiber Based Electrolyte. Mater. Today Proc. 2016, 3, S104–S111. [Google Scholar] [CrossRef]
- Sethupathy, M.; Pandey, P.; Manisankar, P. Development of quasi-solid-state dye-sensitized solar cell based on an electrospun polyvinylidene fluoride-polyacrylonitrile membrane electrolyte. J. Appl. Polym. Sci. 2014, 131, 1–8. [Google Scholar] [CrossRef]
- Weerasinghe, A.M.J.S.; Dissanayake, M.A.K.L.; Senadeera, G.K.R.; Senaviratne, V.A.; Thotawatthage, C.A.; Kumari, J.M.K.W. Application of electrospun cellulose acetate nanofibre membrane based quasi-solid state electrolyte for dye sensitized solar cells. Ceylon J. Sci. 2017, 46, 93–98. [Google Scholar] [CrossRef]
- Zhao, X.G.; Jin, E.M.; Park, J.-Y.; Gu, H.-B. Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Compos. Sci. Technol. 2014, 103, 100–105. [Google Scholar] [CrossRef]
- Dissanayake, M.; Divarathne, H.; Thotawatthage, C.; Dissanayake, C.; Senadeera, G.; Bandara, B. Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim. Acta 2014, 130, 76–81. [Google Scholar] [CrossRef]
- Bandara, T.; Weerasinghe, A.; Dissanayake, M.; Senadeera, G.; Furlani, M.; Albinsson, I.; Mellander, B.-E. Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochim. Acta 2018, 266, 276–283. [Google Scholar] [CrossRef]
- Seo, S.-J.; Yun, S.-H.; Woo, J.-J.; Park, D.-W.; Kang, M.-S.; Hinsch, A.; Moon, S.-H. Preparation and characterization of quasi-solid-state electrolytes using a brominated poly(2,6-dimethyl-1,4-phenylene oxide) electrospun nanofiber mat for dye-sensitized solar cells. Electrochem. Commun. 2011, 13, 1391–1394. [Google Scholar] [CrossRef]
- Park, S.H.; Won, D.H.; Choi, H.J.; Hwang, W.P.; Jang, S.I.; Kim, J.H.; Jeong, S.H.; Kim, J.U.; Lee, J.K.; Kim, M.R. Dye-sensitized solar cells based on electrospun polymer blends as electrolytes. Sol. Energy Mater. Sol. Cells 2011, 95, 296–300. [Google Scholar] [CrossRef]
- Murugadoss, V.; Arunachalam, S.; Elayappan, V.; Angaiah, S. Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics 2018, 24, 4071–4080. [Google Scholar] [CrossRef]
- Fathy, M. Quasi-solid-state Electrolyte for Dye Sensitized Solar Cells Based on Nanofiber PMA-PVDF and PMA-PVDF / PEG Membranes. Int. J. Electrochem. Sci. 2016, 11, 6064–6077. [Google Scholar] [CrossRef]
- Sahito, I.A.; Ahmed, F.; Khatri, Z.; Sun, K.C.; Jeong, S.H. Enhanced ionic mobility and increased efficiency of dye-sensitized solar cell by adding lithium chloride in poly(vinylidene fluoride) nanofiber as electrolyte medium. J. Mater. Sci. 2017, 52, 13920–13929. [Google Scholar] [CrossRef]
- Khanmirzaei, M.H.; Ramesh, S.; Ramesh, K. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep. 2015, 5, 18056. [Google Scholar] [CrossRef] [PubMed]
- Laudenslager, M.J.; Scheffler, R.H.; Sigmund, W.M. Electrospun materials for energy harvesting, conversion, and storage: A review. Pure Appl. Chem. 2010, 82, 2137–2156. [Google Scholar] [CrossRef]
Entry | Composition | Experiment Conditions | Voc 1 (V) | Jsc 2 (mA/cm2) | FF 3 | η 4 (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | ZnO | Solution: PVA, DMF, Zn(CH3COO)2, HAc. * Voltage: 15 kV Rate: 0.015 mL/h | 0.60 | 3.58 | 0.62 | 1.34 | [31] |
2 | TiO2 | Solution: PVP, Ti(Iso), HAc, EtOH. Distance: 20 cm Voltage: 15 kV Rate: 0.2 mL/h | 0.782 | 5.71 | 0.64 | 2.87 | [32] |
3 | Nb2O5 | Solution: PVP, NbEt, EtOH, HAc. Rate: 2 mL/h | 0.77 | 6.68 | 0.59 | 3.05 | [33] |
4 | TiO2-GO | Solution: Ti(Iso), PVA, HAc, GO. * Voltage: 16 kV | 0.784 | 9.41 | 0.61 | 4.52 | [34] |
5 | TiO2-ZnO | Solution: TBT, EtOH, PVP. * Rate: 0.8 mL/h | 0.59 | 13.15 | 0.58 | 4.59 | [35] |
6 | SnO2-TiO2 | Solution: SnCl2·2H2O, EtOH, DMF, PVP. * Voltage: 13.5 kV | 0.723 | 14.71 | 0.48 | 4.61 | [36] |
7 | TiO2-Nb2O5 | Solution: Ti(Iso), PVA, HAc, DMF, EtOH, C10H25NbO5. * Voltage: 15 kV Rate: 0.5 mL/h | 0.79 | 11.6 | 0.63 | 5.8 | [37] |
8 | Ag- TiO2 | Solution: Ti(Iso), PVP, HAc, EtOH, AgNO3. * Voltage: 20 kV Rate: 0.05 mL/h | 0.68 | 14.93 | 0.60 | 6.13 | [38] |
9 | TiO2-ZrO2 | Solution: PMMA, MC/EtOH, ZA, HAc. | 0.69 | 14.9 | – | 6.2 | [39] |
10 | Ti-Gr | Solution: Ti(Iso), PVP, CH3OH, Gr. * Voltage: 12 kV Rate: 1 mL/h | 0.71 | 16.2 | 0.66 | 7.6 | [40] |
Entry | Composition | Experiment Conditions | Voc 1 (V) | Jsc 2 (mA/cm2) | FF 3 | η 4 (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Co-TiC | Solution: PVP, HAc, EtOH, Ti(Iso), Co(CH3COOH)2 Voltage:18 kV | 0.758 | 9.98 | 0.50 | 3.8 | [42] |
2 | Cu2ZnSnS4 | Solution: PVP, CA, EtOH, M+2Cl2, M= Cu, Zn; SnCl4·5H2O, CH4N2S. Voltage: 15 kV Rate: 1.0 mL/h | 0.57 | 8.42 | 0.65 | 3.90 | [43] |
3 | TiC-CNFs | Solution: TiC, PAN, DMF. * Voltage: 20 kV Rate: 0.5 mL/h | 0.72 | 9.71 | 0.64 | 4.5 | [44] |
4 | Ni-Co-CNFs | Solution: PAN, DMF, M+2(CH3COOH)2. M= Co, Ni * Voltage: 20 kV Rate: 0.5 mL/h | 0.73 | 9.78 | 0.64 | 4.66 | [45] |
5 | Fe-Ni-CNFs | Solution: PAN, DMF, Ni(CH3COOH)2, Fe(NO3)2 * Voltage: 25 kV Rate: 0.5 mL/h | 0.72 | 10.1 | 0.65 | 4.7 | [46] |
6 | Ru | Solution: PAN, DMF, RuCl3·xH2O. * Voltage: 13 kV Rate: 0.03 mL/h | 0.70 | 14.77 | 0.60 | 6.23 | [47] |
7 | NiCo2S4 | Solution: M+2(NO3)2. 6H2O, M= Ni, Co DMF, PAN. * Voltage: 15 kV | 0.70 | 17.06 | 0.60 | 7.12 | [48] |
8 | Gr- CuCl2 | Solution: PAN, CuCl2, InCl3, CH4N2S, CHCl3, DMF. * Voltage: 19 kV Rate: 0.2 mL/h | 0.69 | 17.53 | 0.59 | 7.23 | [49] |
9 | C-Pt | Solution: PAN, DMF, H2PtCl6, HCOOH Voltage: 15 kV Rate: 1.0 mL/h | 0.83 | 13.92 | 0.65 | 7.5 | [50] |
10 | Ni-C | Solution: PAN, DMF, Ni (AcAc)2 Distance: 20 cm Voltage: 18 kV | 0.80 | 15.83 | 0.63 | 7.96 | [51] |
Entry | Composition | Experiment Conditions | Voc 1 (V) | Jsc 2 (mA/cm2) | FF 3 | η 4 (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | PVdF-PAN | Solution: PVDF, PAN, (CH3)2CO, DMF. * Voltage: 20 kV Rate: 1.5 mL/h | 0.74 | 6.20 | 0.65 | 3.09 | [53] |
2 | CA | Solution: CA, DMSO, (CH3)2CO. Distance: 10 cm Voltage: 10 kV Rate: 2 mL/h | 0.699 | 9.83 | 0.58 | 4.0 | [54] |
3 | SiO2 | Solution: TEOS, PVP, HAc, EtOH. * Voltage: 20 kV Rate: 0.1 mL/min | 0.60 | 13.63 | 0.59 | 4.85 | [55] |
4 | PAN | Solution: PAN, DMF. Voltage: 8 kV Rate: 2 mL/h | 0.67 | 13.31 | 0.59 | 5.3 | [56] |
5 | PVdF-HFP | Solution: PVDF–HFP, DMF. Distance: 6.5 cm Voltage: 10 kV Rate: 1 mL/h | 0.69 | 11.8 | 0.65 | 5.36 | [57] |
6 | BPPO | Solution: BPPO, Et(OH), NMP. Distance: 10 cm Voltage: 16 kV Rate: 1.8 mL/min | 0.70 | 0.58 | 0.58 | 5.4 | [58] |
7 | PVDF–HFP/PS | Solution: PVDF–HFP, PS, DMF. * Voltage: 14 kV Rate: 2 mL/h | 0.76 | 11.6 | 0.66 | 5.75 | [59] |
8 | PAN-CoS | Solution: CoCl2·6H2O, L-cys, H2Od, PAN, DMF. Distance: 12 cm Voltage: 18 kV Rate: 0.5 mL/h | 0.72 | 14.29 | 0.72 | 7.41 | [60] |
9 | PMA-PVDF/PEG | Solution: PMA, PVDF, PGE, DMF, (CH3)2CO. * Voltage: 20 kV Rate: 0.5 mL/h | 0.93 | 17.22 | 0.66 | 8.23 | [61] |
10 | PVDF-LiCl | Solution: PVDF, DMF, (CH3)2CO, LiCl. * Voltage: 12 kV | 0.746 | 14.31 | 0.82 | 8.73 | [62] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Covarrubias, J.G.; Soto-Muñoz, L.; Iglesias, A.L.; Villarreal-Gómez, L.J. Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review. Materials 2019, 12, 3190. https://doi.org/10.3390/ma12193190
López-Covarrubias JG, Soto-Muñoz L, Iglesias AL, Villarreal-Gómez LJ. Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review. Materials. 2019; 12(19):3190. https://doi.org/10.3390/ma12193190
Chicago/Turabian StyleLópez-Covarrubias, Jesse Gerardo, Laura Soto-Muñoz, Ana Leticia Iglesias, and Luis Jesús Villarreal-Gómez. 2019. "Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review" Materials 12, no. 19: 3190. https://doi.org/10.3390/ma12193190
APA StyleLópez-Covarrubias, J. G., Soto-Muñoz, L., Iglesias, A. L., & Villarreal-Gómez, L. J. (2019). Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review. Materials, 12(19), 3190. https://doi.org/10.3390/ma12193190