Preparation of Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 Ceramic Tools and Cutting Performance in Turning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ceramic Tool Materials
2.2. Performance Test of Ceramic Tool Materials
2.3. Cutting Test of Ceramic Tool Materials
3. Results and Discussion
3.1. Mechanical Properties and Microstructure of Ceramic Tool Materials
3.2. Cutting Performance
3.3. Wear Profile of Ceramic Tools and Its Antifriction Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krolczyk, G.; Maruda, R.; Krolczyk, J.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological trends in machining as a key factor in sustainable production—A review. J. Clean. Prod. 2019, 218, 601–615. [Google Scholar] [CrossRef]
- Mia, M.; Gupta, M.K.; Lozano, J.A.; Carou, D.; Pimenov, D.Y.; Królczyk, G.; Khan, A.M.; Dhar, N.R. Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N-2 assisted turning of Ti-6Al-4V. J. Clean. Prod. 2019, 210, 121–133. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, J.; Zhao, J.; Gong, Z.; Dong, Y. Effect of cutting speed on cutting forces and wear mechanisms in high-speed face milling of Inconel 718 with Sialon ceramic tools. Int. J. Adv. Manuf. Technol. 2013, 69, 2669–2678. [Google Scholar] [CrossRef]
- Deng, J.X. Friction and wear behavior of Al2O3/TiB2/SiCw ceramic composite at temperature up to 800 °C. Ceram. Int. 2001, 27, 135–141. [Google Scholar]
- Deng, J.; Liu, L.; Yang, X.; Liu, J.; Sun, J.; Zhao, J. Self-lubrication of Al2O3/TiC/CaF2 ceramic composites in sliding wear tests and in machining processes. Mater. Des. 2007, 28, 757–764. [Google Scholar] [CrossRef]
- Kumar, G.K.; Ravi, S.M.; Shanker, D.U. Environmentally friendly machining with MoS2-filled mechanically microtextured cutting tools. J. Mech. Sci. Technol. 2018, 32, 3797–3805. [Google Scholar]
- Chen, W.; Gao, Y.; Chen, C.; Xing, J. Tribological characteristics of Si3N4–hBN ceramic materials sliding against stainless steel without lubrication. Wear 2010, 269, 241–248. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Wu, Z.; Liu, L.; Huang, P.; Jiao, A. Analysis of tool-chip interface characteristics of self-lubricating tools with nanotextures and WS2/Zr coatings in dry cutting. Int. J. Adv. Manuf. Technol. 2018, 97, 1–11. [Google Scholar] [CrossRef]
- Broniszewski, K.; Wozniak, J.; Czechowski, K.; Jaworska, L.; Olszyna, A. Al2O3–Mo cutting tools for machining hardened stainless steel. Wear 2013, 303, 87–91. [Google Scholar] [CrossRef]
- Wu, G.; Xu, C.; Xiao, G.; Yi, M.; Chen, Z. Structure design of Al2O3/TiC/CaF2 multicomponent gradient self-lubricating ceramic composite and its tribological behaviors. Ceram. Int. 2018, 44, 5550–5563. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, G.; Zhang, Y.; Fang, B. Finite element design and fabrication of Al2O3/TiC/CaF2 gradient self-lubricating ceramic tool material. Ceram. Int. 2014, 40, 10971–10983. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y.; Peng, S.; Guo, D.; Wen, S.; Luo, J.; Xie, G. Core-shell nanospheres to achieve ultralow friction polymer nanocomposites with superior mechanical properties. Nanoscale 2019, 11, 8237–8246. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Dai, Y.; Yang, Y.; Chew, J.W. Nickel cobalt catalyst supported on TiO2-coated SiO2 spheres for CO2 methanation in a fluidized bed. Int. J. Hydrog. Energy 2019, 44, 13443–13455. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Xiao, G.; Chen, Z.; Ma, J.; Wu, G. Synthesis of (h-BN)/SiO2 core–shell powder for improved self-lubricating ceramic composites. Ceram. Int. 2016, 42, 5504–5511. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, M.; Xiao, G.; Ma, J.; Wu, G.; Xu, C. Al2O3-coated h-BN composite powders and as prepared Si3N4-based self-lubricating ceramic cutting tool material. Int. J. Refract. Met. Hard Mater. 2018, 71, 1–7. [Google Scholar] [CrossRef]
- Wu, G.Y.; Xu, C.H.; Xiao, G.C.; Yi, M.D.; Chen, Z.Q.; Xu, L.H. Self-lubricating ceramic cutting tool material with the addition of nickel coated CaF2 solid lubricant powders. Int. J. Refract. Met. Hard Mater. 2015, 56, 51–58. [Google Scholar] [CrossRef]
- Deng, J.X.; Liu, L.L.; Liu, J.H.; Zhao, J.L.; Yang, X.F. Failure mechanisms of TiB2 particle and SiC whisker reinforce Al2O3 ceramic cutting tools when machining nickel-based alloys. Int. J. Mach. Tool. Manu. 2005, 45, 1393–1401. [Google Scholar]
- Bai, Y.H.; Sun, M.Y.; Li, M.X.; Fan, S.W.; Cheng, L.F. Improved fracture toughness of laminated ZrB2-SiC-MoSi2 ceramics using SiC whisker. Ceram. Int. 2018, 44, 8890–8897. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, D.; Liang, J.; Zhang, X. Enhanced mechanical properties of 3 Y2O3 stabilized tetragonal ZrO2 incorporating tourmaline particles. Ceram. Int. 2018, 44, 15550–15556. [Google Scholar] [CrossRef]
- Tuan, W.; Chen, R.; Wang, T.; Cheng, C.; Kuo, P. Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 2002, 22, 2827–2833. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, L.; Guo, R.; Xu, C.; Li, Q. Mechanical properties and microstructure of Al2O3/Ti(C,N)/CaF2@Al2O3 self-lubricating ceramic tool. Int. J. Refract. Met. Hard Mater. 2019, 80, 144–150. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, N.; Ji, L.; Guo, R.; Xu, C. Influence of CaF2@ Al2O3 on the friction and wear properties of Al2O3/Ti(C,N)/CaF2@Al2O3 self-lubricating ceramic tool. Mater. Chem. Phys. 2019, 223, 306–310. [Google Scholar] [CrossRef]
- Deng, J.; Cao, T. Self-lubricating mechanisms via the in situ formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel. Int. J. Refract. Met. Hard Mater. 2007, 25, 189–197. [Google Scholar] [CrossRef]
Workpiece | C | Si | Mn | Cr | Ni | S | P | Fe |
---|---|---|---|---|---|---|---|---|
40Cr | 0.37–0.45 | 0.17–0.37 | 0.5–0.8 | 0.8–1.1 | ≤0.03 | ≤0.035 | ≤0.035 | Bal. |
Tools | Compositions (vol %) | Flexural Strength (MPa) | Fracture Toughness (MPa·m1/2) | Hardness (GPa) |
---|---|---|---|---|
ATCN | Al2O3/Ti(C,N) | 555 ± 16.65 | 5.78 ± 0.17 | 20.47 ± 0.61 |
ATCN-Z-C | Al2O3/Ti(C,N)/6vol%ZrO2/10vol%CaF2@Al(OH)3 | 540 ± 16.2 | 7.16 ± 0.21 | 16.72 ± 0.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, S.; Guo, R.; Ji, L.; Guo, N.; Li, Q.; Xu, C. Preparation of Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 Ceramic Tools and Cutting Performance in Turning. Materials 2019, 12, 3820. https://doi.org/10.3390/ma12233820
Chen Z, Zhang S, Guo R, Ji L, Guo N, Li Q, Xu C. Preparation of Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 Ceramic Tools and Cutting Performance in Turning. Materials. 2019; 12(23):3820. https://doi.org/10.3390/ma12233820
Chicago/Turabian StyleChen, Zhaoqiang, Shuai Zhang, Runxin Guo, Lianggang Ji, Niansheng Guo, Qi Li, and Chonghai Xu. 2019. "Preparation of Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 Ceramic Tools and Cutting Performance in Turning" Materials 12, no. 23: 3820. https://doi.org/10.3390/ma12233820
APA StyleChen, Z., Zhang, S., Guo, R., Ji, L., Guo, N., Li, Q., & Xu, C. (2019). Preparation of Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 Ceramic Tools and Cutting Performance in Turning. Materials, 12(23), 3820. https://doi.org/10.3390/ma12233820