Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Elemental Analysis
3.2. Optical Microscopy Analysis
3.3. SEM–EDS Analysis
3.4. XRD Analysis
3.5. Vickers Hardness Test
3.6. Corrosion Behaviour
3.6.1. Open Circuit Potential
3.6.2. Potentiodynamic Polarization Curves
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ardelean, L.; Reclaru, L.; Bortun, C.M.; Rusu, L.C. Assessment of Dental Alloys by Different Methods. Chapter 7. In Superalloys; Aliofkhazraei, M., Ed.; IntechOpen Publisher: London, UK, 2015; Available online: https://www.intechopen.com/books/superalloys/assessment-of-dental-alloys-by-different-methods (accessed on 10 October 2019). [CrossRef] [Green Version]
- Cotrut, C.M.; Parau, A.C.; Gherghilescu, A.I.; Titorencu, I.; Pana, I.; Cojocaru, D.V.; Pruna, V.; Constantin, L.; Dan, I.; Vranceanu, M.D.; et al. In Vitro Corrosion Resistance and Biological Compatibility of Cast and Annealed Ti25Nb10Zr Alloy. Metals 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Vlădescu, A.; Dinu, M.; Braic, M.; Vițelaru, C.; Bălăceanu, M.; Târcolea, M.; Braic, V.; Baciu, F.; Cotruț, C.M. The effect of TiSiN interlayers on bond strength of dental ceramic to NiCr and CoCr alloys. Ceram. Int. 2015, 41, 8051–8058. [Google Scholar] [CrossRef]
- Dinu, M.; Cojocaru, M.; Braic, V.; Târcolea, M.; Braic, M.; Miculescu, F.; Vlădescu, A.; Cotrut, C.M. Improvement of the tribological performance in corrosive environment of CoCr alloy by TiSiON coatings. Appl. Surf. Sci. 2015, 332, 295–299. [Google Scholar] [CrossRef]
- Comăneanu, R.M.; Hâncu, V.; Barbu, H.M.; Coman, C.; Cotruț, C.M.; Târcolea, M.; Holicov, A.M.; Ormenișan, A. Comparative assessment of biocompatibility of NiCr and CoCr alloys used in metal-fused-to-ceramic technology. Rev. Chim. 2015, 66, 312–315. [Google Scholar]
- Santos, M.L.; Acciari, H.A.; Vercik, L.C.O.; Guastaldi, A.C. Laser weld: Microstructure and corrosion study of Ag–Pd–Au–Cu alloy of the dental application. Mater. Lett. 2003, 57, 1888–1893. [Google Scholar] [CrossRef]
- Seol, H.J.; Kim, G.C.; Son, K.H.; Kwon, Y.H.; Kim, H.I. Hardening mechanism of an Ag–Pd–Cu–Au dental casting alloy. J. Alloy. Comp. 2005, 387, 139–146. [Google Scholar] [CrossRef]
- Fukui, H.; Shinoda, S.; Mukai, M.; Yasue, K.; Hasegawa, J. Effect of heat treatment on mechanical properties of type IV gold and 12wt% Au-Pd-Ag alloys. Jpn. Soc. Dent. Mater. Devices 1992, 11, 141–148. [Google Scholar]
- Fukui, H.; Mukai, M.; Shinoda, S.; Hasegawa, J. Strengthening mechanism of Au-Pd-Ag-Cu system. Jpn. Soc. Dent. Mater. Devices 1993, 12, 685–690. [Google Scholar]
- Kim, Y.H.; Niinomi, M.; Hieda, J.; Nakai, M.; Fukui, H. Formation of L10-type ordered β′ phase in as-solutionized dental Ag–Pd–Au–Cu alloys and hardening behavior. Mater. Sci. Eng. C 2012, 32, 503–509. [Google Scholar] [CrossRef]
- Kim, Y.H.; Niinomi, M.; Nakai, M.; Akahori, T.; Kanno, T.; Fukui, H. Mechanism of unique hardening of dental Ag–Pd–Au–Cu alloys in relation with constitutional phases. J. Alloy. Comp. 2012, 519, 15–24. [Google Scholar] [CrossRef]
- Akahori, T.; Niinomi, M.; Nakai, M.; Tsutsumi, H.; Kanno, T.; Kim, Y.H.; Fukui, H. Relationship between unique hardening behavior and microstructure of dental silver alloy subjected to solution treatment. J. Jpn. Inst. Met. 2010, 74, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, T.; Niinomi, M.; Nakano, Y.; Akahori, T.; Fukui, H. Fatigue properties of cast Ag-Pd-Cu-Au-Zn alloy for dental applications in the relation with casting defects. Mater. Trans. 2002, 43, 3160–3166. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Niinomi, M.; Nakai, M.; Kawagishi, W.; Fukui, H. Fretting-fatigue properties and fracture mechanism of semi-precious alloy for dental applications. J. Jpn. Inst. Met. 2008, 72, 63–71. [Google Scholar] [CrossRef]
- Mizumoto, T.; Niinomi, M.; Akahori, T.; Katou, K.; Fukui, H. Friction wear properties of dental Ag-Pd-Cu-Au alloy in corrosive environments. Jpn. Soc. Dent. Mater. Devices 2003, 22, 459–468. [Google Scholar]
- Ichinose, S. Corrosion behavior of dental Au-Pd-Cu-Au alloy in various solutions. Jpn. Soc. Dent. Mater. Devices 1992, 11, 149–168. [Google Scholar]
- Seol, H.J.; Lee, D.H.; Lee, H.K.; Takada, Y.; Okuno, O.; Kwon, Y.H.; Kim, H.I. Age-hardening and related phase transformation in an experimental Ag–Cu–Pd–Au alloy. J. Alloy. Compd. 2006, 407, 182–187. [Google Scholar] [CrossRef]
- Yu, C.-H.; Park, M.-G.; Kwon, Y.H.; Seol, H.J.; Kim, H.I. Phase transformation and microstructural changes during ageing process of an Ag-Pd-Cu-Au Alloy. J. Alloy. Compd. 2008, 460, 331–336. [Google Scholar] [CrossRef]
- Mareci, D.; Sutiman, D.; Cailean, A.; Bolat, G. Comparative corrosion study of Ag–Pd and Co–Cr alloys used in dental applications. Bull. Mater. Sci. 2010, 33, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Kanzawa, Y.; Uzuka, T.; Kondo, E.; Shoji, M. Study on the Ag-Pd alloy. J. Jpn. Soc. Dent. Appar. Mater. 1963, 4, 157–160. [Google Scholar]
- Yasuda, K. Study on the age-hardenability of dental precious metal alloys. J. Jpn. Soc. Dent. Appar. Mater. 1969, 10, 156–166. [Google Scholar]
- Ohta, M.; Hisatsune, K.; Yamane, M. Study on the age-hardenable silver alloy. J. Jpn. Soc. Dent. Appar. Mater. 1975, 16, 144–149. [Google Scholar]
- Ohta, M.; Shiraishi, T.; Hisatsune, K.; Yamane, M. Age-hardening of dental Ag-Pd-CuAu alloys. J. Dent. Reserch 1980, 59, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Pencea, I.; Branzei, M.; Turcu, R.N.; Sfat, C.E. New Approach for Chemical Homogeneity Analysis of an AISI 316L Stainless Steel Bar Batch. Rev. Chim. 2018, 69, 1079–1083. [Google Scholar]
- Ohta, M.; Hisatsune, K.; Yamane, M. Age Hardening of Ag-Pd-Cu dental alloy. J. Less Common Met. 1979, 65, 11–21. [Google Scholar] [CrossRef]
- Givan, D.A. Precious metal alloys for dental applications. In Precious Metals Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 109–129. [Google Scholar]
- Korneva, A.; Straumal, B.; Kilmametov, A.; Chulist, R.; Cios, G.; Baretzky, B.; Zięba, P. Dissolution of Ag Precipitates in the Cu–8wt.%Ag Alloy Deformed by High Pressure Torsion. Materials 2019, 12, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements; ASTM G5-14e1; ASTM International: West Conshohocken, PA, USA, 2014.
- Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements; ASTM G59-97(2014); ASTM International: West Conshohocken, PA, USA, 2014.
- Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements; ASTM G102-89(2015)e1; ASTM International: West Conshohocken, PA, USA, 2015.
Element/Alloy | Ag | Au | Pd | Zn | In | Sn | Cu |
---|---|---|---|---|---|---|---|
Designed | 58.0 | 2.0 | 24.0 | 2.0 | 1.5 | 1.5 | 11.0 |
as cast alloy | 57.72 | 1.94 | 24.4 | 1.74 | 1.42 | 1.17 | 11.74 |
U (95%) | 0.07 | 0.03 | 0.06 | 0.06 | 0.03 | 0.04 | 0.08 |
Zone 1 | Zone 1 | Zone 2 | Zone 2 | Zone 3 | Zone 3 | |
---|---|---|---|---|---|---|
Element/Alloy | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % |
Pd L | 22.9 | 21.14 | 25.62 | 24.92 | 23.3 | 21.52 |
Ag L | 58.73 | 53.47 | 60.93 | 58.48 | 59.51 | 54.23 |
In L | 0.01 | 0 | 1.69 | 1.52 | 1.14 | 0.98 |
Sn L | 0.16 | 0.13 | 1.93 | 1.68 | 2.09 | 1.73 |
Cu K | 13.19 | 20.39 | 7.46 | 12.15 | 12.44 | 19.25 |
Zn K | 2.35 | 3.53 | - | - | 1.52 | 2.29 |
Au L | 2.67 | 1.33 | 2.38 | 1.25 | - | - |
Eoc (mV) | Ecor (mV) | Icorr (nA/cm2) | bc (mV) | ba (mV) | Rp (kΩ × cm2) | CR (µm/an) |
---|---|---|---|---|---|---|
+90.47 | +74.73 | 916 | 108.31 | 380.74 | 40.02 | 23.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, D.; Pencea, I.; Antoniac, I.V.; Turcu, R.-N. Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy. Materials 2019, 12, 4199. https://doi.org/10.3390/ma12244199
Gheorghe D, Pencea I, Antoniac IV, Turcu R-N. Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy. Materials. 2019; 12(24):4199. https://doi.org/10.3390/ma12244199
Chicago/Turabian StyleGheorghe, Dan, Ion Pencea, Iulian Vasile Antoniac, and Ramona-Nicoleta Turcu. 2019. "Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy" Materials 12, no. 24: 4199. https://doi.org/10.3390/ma12244199
APA StyleGheorghe, D., Pencea, I., Antoniac, I. V., & Turcu, R. -N. (2019). Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy. Materials, 12(24), 4199. https://doi.org/10.3390/ma12244199