1. Introduction
The extensive use of rubber and plastic creates more convenient lives for citizens. However, the waste treatment department is under high pressure due to the rapid increase of waste rubber and waste plastic (WRP) [
1]. Conventionally, the WRP are treated through landfilling or burning, although these methods result in new environmental concerns, e.g., air pollution, dioxin emissions, land pollution, and even ocean pollution [
1,
2,
3,
4,
5,
6,
7]. Asphalt binder is commonly used in pavement industry around the world as a paving material because of its merits such as easy construction and driving comfort [
8,
9,
10,
11,
12,
13,
14,
15]. By means of incorporating wastes into asphalt binder, a large amount of domestic garbage or industrial refuse can be consumed with environmental benefits [
1,
16,
17,
18,
19]. Thus, attention has been focused on the possibility of using asphalt binder as an innovative waste treatment method [
20,
21,
22]. Specifically, previous studies have demonstrated the feasibility of recycling various types of waste materials into asphalt materials, for instance, end-of-life vehicle tires [
23], waste plastic [
2,
24], electronic waste powders [
17], marble waste [
25], waste bleaching clays [
26], waste glass powder [
27], waste wood resources [
28], etc.
During the late 1980s and early 1990s, highway industry was encouraged by the US Department of Transportation (USDOT) and Federal Highway Administration (FHWA) to utilize recycled crumb rubber (CR) in highway construction [
29,
30]. Numerous studies focusing on CR modified asphalt binder were then carried out. Previous studies reported that CR significantly increase the mechanical properties of asphalt binder [
31,
32,
33]. By applying CR powders, both the high and low temperature performance of asphalt binder can be significantly enhanced [
22,
33,
34]. Specifically, CR increases the viscosity and rutting resistance of base binder at high temperatures as well as the creep compliance at low temperatures [
35]. The fracture resistance property of CR modified asphalt binder (CRMA) was also proved to be much better than that of base binder [
36,
37]. Numerous efforts were also spent to dig into the modification mechanism. It is believed that the swelling and dissolution occurring between rubber particle and asphalt binder play a fundamental role in increasing binder’s viscosity [
31,
38,
39,
40,
41].
Inspired by the success of the value-added application of waste rubber, asphalt engineers and researchers put their eyes on waste plastic which is another source of pollution that is difficult to manage [
42]. Like waste rubber, the feasibility of applying waste plastic into asphalt pavement as a modifier was also demonstrated [
2,
24,
43]. Previous studies revealed that waste plastic can be an alternative for the current binder modifiers. It was reported that waste plastic can improve the rutting resistance, fracture resistance, thermal stability, degradation, and low temperature cracking properties of base binder [
44,
45]. Waste plastic was demonstrated to have the potential to perform as an anti-aging and anti-striping agent in base binder [
46,
47].
However, recycling WRP into asphalt raises the environmental concerns about emissions generated during mixing and paving processes of asphalt mixture. This is because WRP improves the viscosity of base binder which in turn results in higher manufacturing and paving temperatures of the asphalt mixture [
48]. Furthermore, poor workability caused by binder’s high viscosity becomes another hurdle to promote the application of WRP modified asphalt binder [
23]. One feasible approach to handle the abovementioned issue is integrating the WPR additive with warm mix technologies [
49,
50]. Previous studies documented that by combining warm mix technology, WRP can be effectively consumed in asphalt binder with enhanced mechanical properties as well as environmental benefits. By incorporating warm mix technologies, the manufacturing and paving temperature of WRP modified asphalt mixture can be reduced by around 20 °C [
51,
52]. Based on the mechanism, the warm mix technologies can be grouped into three categories: foaming technologies, addition of chemical additives, and addition of organic additives [
53]. Aspha-min, Evotherm, and Sasobit are the corresponding represent commercial products, respectively. The organic additives added into base binder are waxes. When the binder’s temperature increases above the melting point of wax, the viscosity of the binder decreases. Nevertheless, it should be considered that the use of warm mix technologies creates extra cost for pavement construction. Therefore, producing a modifier derived from WRP with the capacity for increasing service property and workability of asphalt binder would be a win-win solution for the abovementioned issues.
Chemically, rubber and plastic are both high-molecular polymers which can be thermally cracked into small-molecules. Rubber can be thermally cracked into pyrolysis gas, pyrolysis oil, and heavy lysate [
54,
55]. Plastic can be thermally cracked into wax [
56]. And the components of these pyrolysis depend on the thermal cracking condition. Thus, by choosing suitable thermal cracking conditions, it is possible to produce an asphalt binder modifier derived from WRP for the purpose of increasing both workability and mechanical properties of asphalt binder.
The objective of this study is to evaluate the effect of a binder additive, which is produced by thermal cracking WRP in laboratory, on mechanical and chemical properties of base binder. To this end, three empirical characteristics—namely, penetration, softening point, and ductility—were measured. Rheological properties including viscosity, rutting factor, fatigue life, and bending stiffness were characterized. The effect of thermally cracked WRP (CWRP) on chemical properties of asphalt binder was also investigated with Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The dispersity of CWRP inside asphalt binder was evaluated using fluorescence microscope (FM).
3. Findings and Discussion
3.1. Viscosity
Viscosity of all asphalt binders from 80 °C to 120 °C were investigated for evaluating the workability of asphalt binders. The viscosity of asphalt binders before and after short-term aging is presented in
Figure 3a,b, respectively. It can be seen in
Figure 3a that the viscosity of CMA at 115 °C is around 0.17 Pa·s. According to the Superpave mix design manual [
69], 115 °C can be set as CMA’s mixing temperature which is 50 °C lower than that of Pen 70. Consequently, CMA was RTFO aged at 120 °C for 85 min for better simulating the short-term aging process [
65,
70]. In this study, the error bars were drawn based on the standard deviation of the test results.
As shown in
Figure 3a, for both base and CWRP modified binder, viscosity declines as the temperature increases, although the decrease rate of CWRP modified binder is higher than that of Pen 70. The decrease rate of CMA sharply increased when temperature was higher than 90 °C, while the decrease rate of Pen 70 remains almost constant. In addition, it is interesting to know that the viscosity of CMA is higher compared to that of Pen 70 if the test temperature is lower than 90 °C. When temperature increases above 90 °C, the viscosity of CMA is much lower than that of Pen 70. This phenomenon is caused by the melting of added PW. When temperature increases above the melting point of PW, PW melts which declines the viscosity of asphalt binder. It indicates that adding CWRP increases the workability of neat binder.
Similarly, the turning point of CMA’s viscosity curve can be observed in the RTFO aged specimens. In addition, data presented in
Figure 3b illustrates that within the whole temperature range, the viscosity of short-term aged CMA is higher than that of short-term aged Pen 70 which indicates a better bonding performance of CMA.
3.2. Three Empirical Characteristics
The results of the penetration (25 °C) and softening point tests are presented in
Figure 4.
According to the softening points presented in
Figure 4a, it was found that the CWRP modifier increases the softening point of asphalt binder. Like rubber asphalt and other polymer modified asphalt binders, the increasing of softening point could be explained by the swelling and dissolution of the polymers in CWRP. In addition, the wax inside the CWRP also plays a role in increasing the softening point of CMA. After RTFO aging, although the softening point of CMA and Pen 70 are both increased, the softening point of CMA is lower than that of Pen 70. This might be because lighter components in asphalt binder have a strong affinity for CWRP, which is less likely to be volatilized. Consequently, the volatilization of lighter components in asphalt binder during RTFO aging process is weakened. Considering the changes on the properties of asphalt binder resulting from RTFO aging are mainly because of the volatilization of lighter components in asphalt binder, lower volatility leads to a smaller change on penetration value and softening point. Due to the same reason, in comparison with Pen 70, the penetration value of CMA presents a lower sensitivity to RTFO aging.
Based on the penetration values, PI, which is defined by Equations (1) and (2), was calculated for evaluating the temperature sensitivity of asphalt binder. The calculated PIs are listed in
Table 2.
where,
T is the temperature at which the penetration test is performed
P is the penetration value at the corresponding test temperature
A and K are determined by the lg (penetration value) vs. temperature curve
PI reveals that the temperature sensitivity of CMA is comparable to that of Pen 70, which means adding CWRP does not negatively affect the temperature sensitivity of binder.
The ductility of CMA at 15 °C is larger than 150 cm while that of Pen 70 is 105.8 cm. This indicates that, in comparison with Pen 70, CMA may have a better low-temperature performance.
3.3. High-Temperature Performance
The high-temperature performance was evaluated by the temperature sweep test. Rutting factors, as well as the failure temperatures, are presented in
Figure 5.
As shown in
Figure 5a, the failure temperature values of unaged binders are higher than those of aged binders. Before RTFO aging, failure temperature value of neat binder is higher than that of CMA binder. Conversely, after RTFO aging, the failure temperature value of CMA is higher than that of based binder. Consistent with the failure temperature, base binder and CMA show higher rutting factors before and after aging, respectively. Since rutting happened on short-term aged asphalt mixture, CMA shows a better rutting resistance performance.
3.4. Low-Temperature Performance
Low temperature performance of both base binder and modified binder were evaluated using both stiffness value and m-value obtained from Bending Beam Rheology (BBR) tests. The test results are listed in
Table 3.
According to
Table 3, it can be found that the stiffnesses of CMA are much lower than that of Pen 70. While the m-values of CMA are bigger than that of Pen 70. According to the ASTM standard [
68], stiffness value should be less than 300 MPa, while the m-value should be larger than 0.3 for a specific temperature grade. Low-temperature cracking is more likely to occur on asphalt binder with higher stiffness. The BBR test results reveals that CWRP significantly increases the low-temperature performance of base binder.
3.5. Fatigue Performance
Fatigue performance is evaluated by time sweep test at 25 °C. The results of time sweep test is shown in
Figure 6. 50% reduction of initial complex modulus method was utilized to define the fatigue failure point of asphalt binder. The number of failure values (Nf) is presented in
Table 4. Higher Nf indicates superior fatigue resistance at the tested strain level.
As can be seen, regardless of the aging state, Nf of CMA is higher than that of Pen 70. It indicates that CMA shows longer fatigue life, which means that CWRP can increase the fatigue life of binder at the selected strain level.
3.6. Dispersity
The dispersity is characterized by FM observation providing information on the polymer and insoluble component in the modified binder. Dispersity refers to the degree of fragmentation of the dispersed phase. Dispersity can be characterized by evaluating the average diameter of dispersed phase. FM observed information was analyzed using MATLAB to calculate the number of particles and the corresponding diameters.
Figure 7 shows the FM image of CWRP modified asphalt binder.
As shown, the FM image was gridded into 16 sections. In each section, particle numbers and particle diameters were collected from the FM image. The average diameters were then calculated based on the collected particle number and particle diameter. Particle numbers in each section and the corresponding average diameters were listed in
Table 5.
To evaluate the differences among particle numbers and average diameter, normality tests and outlier test were performed in advance. Kolmogorov-Smirnov (K-S) testing was performed on both the particular number and average diameter. The K-S test results are shown in
Table 6.
As can be seen, for both particular number and average diameter, the Asymptotic Significance (Asymp. Sig.) is larger than 0.05 which indicates that the distribution of the particular number and average diameter is normal.
The results of normality testing and outlier testing are presented in
Figure 8 and
Figure 9, respectively. As expected, both particle number and average diameter follow the normal distribution with the mean value of 7.31 and 3.65, respectively.
Box plot was employed to detect the outliers of the data set. The upper and lower limit of the non-outlier were determined based on the quantile and an empirical constant K (K = 1.5). Specifically, if Q
1 and Q
3 are the lower and upper quartiles, respectively, then the non-outlier range is defined as [Q
1 − k(Q
3 − Q
1), Q
3 + k(Q
3 − Q
1)]. Data out of the range is defined as outliers. As shown in
Figure 9, since all the data were observed within the non-outlier range, it can be concluded that no outliers were detected in these two data sets.
To further analyze the difference among the particle number and average diameter in each section, the sections were divided into eight groups. Section 1 and 2 are group 1, section 3 and 4 are group 2, and so on. ANOVA testing was then performed at a 95% confidence interval for determining the relationship between group and particle number and average diameter. The ANOVA test results are shown in
Table 7. This table illustrates that for both particle number and average diameter, no significant difference between groups can be detected, which means the dispersity of CWRP inside base binder is statistically uniform.
3.7. Fourier Transform Infrared Spectroscopy
FTIR tests were performed on both asphalt binders and the additive for determining the effects of CWRP additive on the chemical composition of base binder.
Figure 10 illustrates the FTIR spectrum of Pen 70 base binder, CWRP modifier, and CWRP modified asphalt binder.
In these spectrums, the major bands around 2920 cm−1 and 2852 cm−1 resulted from the vibration of stretching vibrations of Alkyl C–H and Aliphatic C–H, respectively. The absorption at around 1456.50 cm−1 and 1376.47 cm−1 are caused by the blending vibration of methylene and methyl, respectively, while those at 720.78 cm−1 and 698.12 cm−1 are due to the plane swing vibration of the methylene in alkyl group.
As can be seen, both the binders and modifier have the absorption peaks at same wavenumbers, so no major chemical reactions were detected due to the addition of CWRP modifier.
3.8. Differential Scanning Calorimetry
Differential scanning calorimetry (DSC) is a thermos-analytical method that allows the determination of physical changes in a material associated with a heat exchange. The properties that are especially relevant for bitumen are physical changes such as glass transition temperature (Tg) and phase transition such as melting and crystallization. The DSC tests were carried out to characterize the thermal property of all the asphalt binders.
Figure 11 shows the DSC results.
Previous studies demonstrated that lower Tg indicates better low-temperature performance, and vice versa [
71,
72]. Thus, Tg were utilized to evaluate the low temperature of asphalt binder. As can be seen, the Tg of CMA is around 5.3 °C lower than that of Pen 70. Again, it indicates that CWRP have positive influence on the low-temperature performance of asphalt binder. In addition, around the softening point of asphalt binder, the exothermic peak of CMA occurred few degrees later than that of Pen 70 which reveals the adding CWRP also increases the high-temperature performance of asphalt binder. In addition, no significant differences can be found between the DSC curve of CMA and Pen 70. By combining with the results of FTIR, it can be proposed that the modification mechanism of CWRP is mainly because of the physical change instead of chemical reaction.
4. Findings and Recommendations
This paper presents a laboratory study to characterize and compare the rheological properties of Pen 70 modified with CWRP. According to the test results on viscosity, rutting factors, time sweep, BBR test, FM test, FTIR, and DSC, the following major findings have been obtained:
The incorporation of CWRP additives enhances the rutting resistance, low-temperature, and fatigue life of virgin asphalt binder. The enhancement comes from the modification effect by the polymers in CWRP.
Adding CWRP increases the workability because of the lighter compositions and wax in CWRP.
CWRP is found to be uniformly distributed inside asphalt binder.
Chemical reaction between CWRP and based binder cannot be detected. The modification of CWRP is more likely due to physical change.
Based on the limited findings of this study, recycling WRP into asphalt binder towards enhanced mechanical properties and environmental benefits appears promising. CWRP has been found to be able to increase the workability and service performance of asphalt binder. Further research on the performance of asphalt mixture is required. In addition, adjusting the thermal cracking process for producing asphalt binder modifier with better performance is also recommended.