Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material Composition
2.2. Heat Treatment
2.3. Eddy Current Detection System
2.4. Microstructure of AISI 410 Steel Samples
2.5. Hardness Test of AISI 410 Steel
3. Results and Discussion
3.1. Microstructure Characteristics
3.2. Relationship between Electromagnetic Characteristics and Eddy Current Outputs
3.3. Relationship between Hardness and Outputs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Girisha, K.G.; Rao, K.V.S. Improvement of Corrosion Resistance of Aisi 410 Martensitic Steel Using Plasma Coating. Mater. Today-Proc. 2018, 5, 7622–7627. [Google Scholar] [CrossRef]
- Chakraborty, G.; Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Paul, V.T.; Panneerselvam, G.; Dasgupta, A. Study on tempering behaviour of AISI 410 stainless steel. Mater. Charact. 2015, 100, 81–87. [Google Scholar] [CrossRef]
- Hughs, D. The Cause of Evident Magnetism in Iron, Steel, and Other Magnetic Metals. Nature 1883, 28, 159–162. [Google Scholar]
- Konoplyuk, S. Estimation of pearlite fraction in ductile cast irons by eddy current method. Ndt E Inter. 2010, 43, 360–364. [Google Scholar] [CrossRef]
- Ghanei, S.; Kashefi, M.; Mazinani, M. Eddy current nondestructive evaluation of dual phase steel. Mater. Des. 2013, 50, 491–496. [Google Scholar] [CrossRef]
- Zergoug, M.; Lebaili, S.; Boudjellal, H.; Benchaala, A. Relation between mechanical microhardness and impedance variations in eddy current testing. Ndt E Inter. 2004, 37, 65–72. [Google Scholar] [CrossRef]
- Khan, S.H.; Ali, F.; Khan, A.N.; Iqbal, M.A. Pearlite determination in plain carbon steel by eddy current method. J. Mater. Process. Technol. 2008, 200, 316–318. [Google Scholar] [CrossRef]
- Sorger, G.L.; Oliveira, J.P.; Inácio, P.L.; Enzinger, N.; Vilaça, P.; Miranda, R.M.; Santos, T.G. Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. J. Mater. Sci. Technol. 2019, 35, 360–368. [Google Scholar] [CrossRef]
- Mercier, D.; Lesage, J.; Decoopman, X.; Chicot, D. Eddy currents and hardness testing for evaluation of steel decarburizing. NDT & E Inter. 2006, 39, 652–660. [Google Scholar]
- Kahrobaee, S.; Kashefi, M. Hardness profile plotting using multi-frequency multi-output electromagnetic sensor. Ndt E Inter. 2011, 44, 335–338. [Google Scholar] [CrossRef]
- Hashmi, J.; Khan, M.; Khan, M.; Jaffery, S.H.I.; Ali, L.; Anwar, M.N.; Subhani, T. Evaluation of eddy current signatures for predicting different heat treatment effects in chromium-vanadium (CrV) spring steel. Proc. Inst. Mech. Eng. Part L-J. Mater. Des. Appl. 2017, 231, 259–271. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, M.; Xie, F.; Cao, M. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection. Sensors 2017, 17, 2814. [Google Scholar] [CrossRef]
- Ren, J.; Lin, J.; Xu, K. Eddy Current Testing; China Machine Press: Beijing, China, 2013; pp. 12–14. (In Chinese) [Google Scholar]
- Gukendran, R.; Parameshwaran, R.; Ponappa, K. Characterization of Case Hardened Aisi 4130 Steel Using Eddy Current Testing. Arch Metall Mater. 2017, 62, 1833–1837. [Google Scholar] [CrossRef]
- Guo, B.T.; Zhang, Z.Y.; Li, R.G. Ultrasonic and eddy current non-destructive evaluation for property assessment of 6063 aluminum alloy. Ndt E Inter. 2018, 93, 34–39. [Google Scholar] [CrossRef]
- Chen, X.L.; Lei, Y.Z. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. Ndt E Inter. 2015, 75, 33–38. [Google Scholar] [CrossRef]
- Zhang, C.; Bowler, N.; Lo, C. Magnetic characterization of surface-hardened steel. J. Magn. Magn. Mater. 2009, 321, 3878–3887. [Google Scholar] [CrossRef]
- Lo, C.C.H.; Kinser, E.R.; Melikhov, Y.; Jiles, D.C. Magnetic nondestructive characterization of case depth in surface-hardened steel components. AIP Conf. Proc. 2006, 820, 1253–1260. [Google Scholar]
- Hao, X.J.; Yin, W.; Strangwood, M.; Peyton, A.J.; Morris, P.F.; Davis, C.L. Off-line measurement of decarburization of steels using a multifrequency electromagnetic sensor. Scr. Mater. 2008, 58, 1033–1036. [Google Scholar] [CrossRef]
- Rumiche, F.; Indacochea, J.E.; Wang, M.L. Assessment of the Effect of Microstructure on the Magnetic Behavior of Structural Carbon Steels Using an Electromagnetic Sensor. J. Mater. Eng. Perform. 2008, 17, 586–593. [Google Scholar] [CrossRef]
- Kahrobaee, S.; Kashefi, M.; Alam, A.S. Magnetic NDT Technology for characterization of decarburizing depth. Surf Coat Tech. 2011, 205, 4083–4088. [Google Scholar] [CrossRef]
- Peter, J.S. Nondestructive Evaluation Theory, Techniques and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 279–280. [Google Scholar]
- Haldane, R.J.; Yin, W.; Strangwood, M.; Peyton, A.J.; Davis, C.L. Multi-frequency electromagnetic sensor measurement of ferrite/austenite phase fraction—Experiment and theory. Scr. Mater. 2006, 54, 1761–1765. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Cr | Ni | Fe |
---|---|---|---|---|---|---|---|
0.094 | 0.42 | 0.40 | 0.017 | 0.004 | 13.35 | 0.35 | Balance |
Sample Number | Quenching Temperature | Holding Time | Quenching Method | Main Microstructure |
---|---|---|---|---|
1 | 800 °C | 1 h | Oil quenching | F |
2 | 820 °C | 1 h | Oil quenching | M + F |
3 | 840 °C | 1 h | Oil quenching | M + F |
4 | 860 °C | 1 h | Oil quenching | M + F |
5 | 880 °C | 1 h | Oil quenching | M + F |
6 | 900 °C | 1 h | Oil quenching | M + F |
7 | 930 °C | 1 h | Oil quenching | M + F |
8 | 970 °C | 1 h | Oil quenching | M |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wei, Z.; Xie, F.; Sun, B. Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials 2019, 12, 1290. https://doi.org/10.3390/ma12081290
Zhang H, Wei Z, Xie F, Sun B. Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials. 2019; 12(8):1290. https://doi.org/10.3390/ma12081290
Chicago/Turabian StyleZhang, Huayu, Zhiheng Wei, Fengqin Xie, and Baohai Sun. 2019. "Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method" Materials 12, no. 8: 1290. https://doi.org/10.3390/ma12081290
APA StyleZhang, H., Wei, Z., Xie, F., & Sun, B. (2019). Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials, 12(8), 1290. https://doi.org/10.3390/ma12081290