Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of TiO2 Nanotube Thin Films
2.2. Preparation of CdSe–TiO2 Nanotube Thin Films
2.3. Characterizations
2.4. Photoelectrochemical Testing
3. Results and Discussion
Mechanism Study of CdSe–TiO2 Nanotubes via CBD Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, F.U.; Ahmed, U.; Muhyuddin, M.; Yasir, M.; Ashiq, M.N.; Basit, M.A. Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater. Res. Bull. 2019, 120, 110588. [Google Scholar] [CrossRef]
- Kleiman, A.; Meichtry, J.; Vega, D.; Litter, M.; Márquez, A. Photocatalytic activity of TiO2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts. Surf. Coat. Technol. 2020, 382, 125154. [Google Scholar] [CrossRef]
- Lim, Y.P.; Lim, Y.C. Synthesis of Hybrid Cu-Doped TiO2 Photocatalyst for Dye Removal. in Key Engineering Materials. Trans. Tech. Publ. 2019, 797, 84–91. [Google Scholar]
- Özcan, L.; Mutlu, T.; Yurdakal, S. Photocatalytic degradation of Paraquat by pt loaded TiO2 nanotubes on Ti anodes. Materials 2018, 9, 1715. [Google Scholar] [CrossRef] [Green Version]
- Shikoh, A.S.; Ahmad, Z.; Touati, F.; Shakoor, R.; Al-Muhtaseb, S.A. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram. Int. 2017, 43, 10540–10545. [Google Scholar] [CrossRef]
- Hong, S.-T.; Lin, L.-Y. Fabrication of TiO2 nanoparticle/TiO2 microcone array photoanode for fiber-type dye-sensitized solar cells: Effect of acid concentration on morphology of microcone. Electrochim. Acta 2020, 331, 135278. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Hamid, S.B.A. Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J. Mater. Sci. Mater. Electron. 2016, 28, 3819–3836. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Hamid, S.B.A. Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram. Int. 2017, 43, 625–633. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Lee, K.M.; Juan, J.C. Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Met. 2018, 37, 919–928. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W. Reduced Graphene Oxide Decorated Tio2 for Improving Dye-Sensitized Solar Cells (DSSCs). Curr. Nanosci. 2019, 15, 631–636. [Google Scholar] [CrossRef]
- Haring, A.; Morris, A.; Hu, M. Controlling morphological parameters of anodized titania nanotubes for optimized solar energy application. Materials 2012, 5, 1890–1909. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.N.; Nguyen, M.V.; Nguyen, T.H.T.; Doan, M.T.; Ngoc, L.L.T.; Janssens, E.; Yadav, A.; Lin, P.C.; Nguyen, M.S.; Hoang, N.H. Surface modified titanium dioxide nanofibers with gold nanoparticles for enhance photoelectrochemical water splitting. Materials 2020, 10, 261. [Google Scholar]
- Wang, Q.; Sun, C.; Liu, Z.; Tan, X.; Zheng, S.; Zhang, H.; Wang, Y.; Gao, S. Ultrasound-assisted successive ionic layer adsorption and reaction synthesis of Cu2O cubes sensitized TiO2 nanotube arrays for the enhanced photoelectrochemical performance. Mater. Res. Bull. 2019, 111, 277–283. [Google Scholar] [CrossRef]
- Lim, Y.-C.; Zainal, Z.; Tan, W.-T.; Hussein, M.Z.; Chin, L.Y. Anodization Parameters Influencing the Growth of Titania Nanotubes and Their Photoelectrochemical Response. Int. J. Photoenergy 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mohamed, F.; Ashraf, A.M.; Shaban, M.; Khan, A.A.P.; Asiri, A.M. Enhanced photoelectrochemical water splitting activity of carbon nanotubes@TiO2 nanoribbons in different electrolytes. Chemosphere 2020, 238, 124554. [Google Scholar] [CrossRef]
- Samsudin, N.A.; Zainal, Z.; Lim, H.N.; Sulaiman, Y.; Chang, S.-K.; Lim, Y.-C.; Amin, W.N.M. Enhancement of Capacitive Performance in Titania Nanotubes Modified by an Electrochemical Reduction Method. J. Nanomater. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Qorbani, M.; Khajehdehi, O.; Sabbah, A.; Naseri, N. Ti-rich TiO2 Tubular Nanolettuces by Electrochemical Anodization for All-Solid-State High-Rate Supercapacitor Devices. ChemSusChem 2019, 12, 4064–4073. [Google Scholar] [CrossRef]
- Heng, I.; Lai, C.W.; Juan, J.C.; Numan, A.; Iqbal, J.; Teo, E.Y.L. Low-temperature synthesis of TIO2 nanocrystals for high performance electrochemical supercapacitors. Ceram. Int. 2019, 45, 4990–5000. [Google Scholar] [CrossRef]
- Heng, I.; Low, F.W.; Lai, C.W.; Juan, J.C.; Amin, N.; Tiong, S.K. High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. J. Alloy. Compd. 2019, 796, 13–24. [Google Scholar] [CrossRef]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuators B Chem. 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Lai, C.W.; Sreekantan, S. Study of WO3 incorporated C-TiO2 nanotubes for efficient visible light driven water splitting performance. J. Alloy. Compd. 2013, 547, 43–50. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y.; Ezati, F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci. 2018, 514, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Ayal, A.K.; Zainal, Z.; Lim, H.N.; Talib, Z.A.; Lim, Y.-C.; Chang, S.-K.; Holi, A.M. Fabrication of CdSe nanoparticles sensitized TiO 2 nanotube arrays via pulse electrodeposition for photoelectrochemical application. Mater. Res. Bull. 2018, 106, 257–262. [Google Scholar] [CrossRef]
- Tsui, L.-K.; Saito, M.; Homma, T.; Zangari, G. Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance. J. Mater. Chem. A 2015, 3, 360–367. [Google Scholar] [CrossRef]
- Diaz-Real, J.; Elsaesser, P.; Holm, T.; Mérida, W. Electrochemical reduction on nanostructured TiO2 for enhanced photoelectrocatalytic oxidation. Electrochimica Acta 2020, 329, 135162. [Google Scholar] [CrossRef]
- Cortes, M.A.L.R.M.; McMichael, S.; Hamilton, J.W.J.; Sharma, P.K.; Brown, A.; Byrne, J.A. Photoelectrochemical reduction of CO2 with TiNT. Mater. Sci. Semicond. Process. 2020, 108, 104900. [Google Scholar] [CrossRef]
- Pang, Y.; Feng, Q.; Kou, Z.; Xu, G.; Gao, F.; Wang, B.; Pan, Z.; Lv, J.; Zhang, Y.; Wu, Y. Surface precleaning strategy intensifies interface coupling of Bi2O3/TiO2 heterostructure for enhanced photoelectrochemical detection properties. Mater. Chem. Front. 2020, 4, 638–644. [Google Scholar] [CrossRef]
- Favet, T.; Keller, V.; Cottineau, T.; El Khakani, M.A. Enhanced visible-light-photoconversion efficiency of TiO2 nanotubes decorated by pulsed laser deposited CoNi nanoparticles. Int. J. Hydrog. Energy 2019, 44, 28656–28667. [Google Scholar] [CrossRef]
- Fawzy, S.M.; Omar, M.M.; Allam, N.K. Photoelectrochemical water splitting by defects in nanostructured multinary transition metal oxides. Sol. Energy Mater. Sol. Cells 2019, 194, 184–194. [Google Scholar] [CrossRef]
- Ahmad, A.; Yerlikaya, G.; Rehman, Z.-U.; Paksoy, H.; Kardaş, G. Enhanced photoelectrochemical water splitting using gadolinium doped titanium dioxide nanorod array photoanodes. Int. J. Hydrog. Energy 2020, 45, 2709–2719. [Google Scholar] [CrossRef]
- Venturini, J.; Bonatto, F.; Guaglianoni, W.C.; Lemes, T.; Arcaro, S.; Bonatto, F.; Bergmann, C.P. Cobalt-doped titanium oxide nanotubes grown via one-step anodization for water splitting applications. Appl. Surf. Sci. 2019, 464, 351–359. [Google Scholar] [CrossRef]
- Frites, M.; Khan, S.U. Nano-wall like visible-light active carbon modified n-TiO2 thin films for efficient photoelectrochemical oxygen separation from water. Int. J. Hydrogen Energy 2019, 44, 10519–10527. [Google Scholar] [CrossRef]
- Li, Z.; Cui, X.; Hao, H.; Lu, M.; Lin, Y. Enhanced photoelectrochemical water splitting from Si quantum dots/TiO2 nanotube arrays composite electrodes. Mater. Res. Bull. 2015, 66, 9–15. [Google Scholar] [CrossRef]
- Wang, L.; Han, J.; Feng, J.; Wang, X.; Su, D.; Hou, X.; Hou, J.; Liang, J.; Dou, S.X. Simultaneously efficient light absorption and charge transport of CdS/TiO2 nanotube array toward improved photoelectrochemical performance. Int. J. Hydrog. Energy 2019, 44, 30899–30909. [Google Scholar] [CrossRef]
- Chen, S.; Li, C.; Hou, Z. A novel in situ synthesis of TiO2/CdS heterojunction for improving photoelectrochemical water splitting. Int. J. Hydrog. Energy 2019, 44, 25473–25485. [Google Scholar] [CrossRef]
- Hajjaji, A.; Jemai, S.; Rebhi, A.; Trabelsi, K.; Gaidi, M.; AlHazaa, A.; Al-Gawati, M.; El Khakani, M.; Bessais, B. Enhancement of photocatalytic and photoelectrochemical properties of TiO2 nanotubes sensitized by SILAR—Deposited PbS nanoparticles. J. Mater. 2020, 6, 62–69. [Google Scholar] [CrossRef]
- Lai, C.W.; Lau, K.S.; Chou, P.M. CdSe/TiO2 nanotubes for enhanced photoelectrochemical activity under solar illumination: Influence of soaking time in CdSe bath solution. Chem. Phys. Lett. 2019, 714, 6–10. [Google Scholar] [CrossRef]
- Buehler, N.; Meier, K.; Reber, J.F. Photochemical hydrogen production with cadmium sulfide suspensions. J. Phys. Chem. 1984, 88, 3261–3268. [Google Scholar] [CrossRef]
- Babu, V.J.; Vempati, S.; Uyar, T.; Ramakrishna, S. Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 2015, 17, 2960–2986. [Google Scholar] [CrossRef]
- Wang, W.; Li, F.; Zhang, D.; Leung, D.Y.C.; Li, G. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Appl. Surf. Sci. 2016, 362, 490–497. [Google Scholar] [CrossRef]
- Ouyang, J.; Chang, M.; Zhang, Y.; Li, X. CdSe-sensitized TiO2 nanotube array film fabricated by ultrasonic-assisted electrochemical deposition and subsequently wrapped with TiO2 thin layer for the visible light photoelectrocatalysis. Thin Solid Films 2012, 520, 2994–2999. [Google Scholar] [CrossRef]
- Jones, A.C. Developments in metalorganic precursors for semiconductor growth from the vapour phase. Chem. Soc. Rev. 1997, 26, 101. [Google Scholar] [CrossRef]
- Fujii, M.; Kawai, T.; Kawai, S. Photoelectrochemical properties of cadmium chalcogenide thin films prepared by vacuum evaporation. Sol. Energy Mater. 1988, 18, 23–35. [Google Scholar] [CrossRef]
- Lai, C.W.; Lau, K.S.; Samad, N.A.A.; Chou, P.M. CdSe Species Decorated TiO2 Nanotubes Film Via Chemical Bath Deposition for Enhancing Photoelectrochemical Water Splitting Performance. Curr. Nanosci. 2018, 14, 1–6. [Google Scholar] [CrossRef]
- Sun, W.-T.; Yu, Y.; Pan, H.-Y.; Gao, X.-F.; Chen, Q.; Peng, L.-M. CdS Quantum Dots Sensitized TiO2Nanotube-Array Photoelectrodes. J. Am. Chem. Soc. 2008, 130, 1124–1125. [Google Scholar] [CrossRef]
- Lai, C.W.; Sreekantan, S. Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance. Int. J. Hydrog. Energy 2013, 38, 2156–2166. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, X.; Chen, S.; Yu, H.; Ma, N. “Mulberry-like” CdSe Nanoclusters Anchored on TiO2Nanotube Arrays: A Novel Architecture with Remarkable Photoelectrochemical Performance. Chem. Mater. 2009, 21, 3090–3095. [Google Scholar] [CrossRef]
- Lai, C.W.; Sreekantan, S. Optimized Sputtering Power to Incorporate Wo3 into C–Tio2 Nanotubes for Highly Visible Photoresponse Performance. Nano 2012, 7, 1250051. [Google Scholar] [CrossRef] [Green Version]
- Leghari, S.A.K. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem. Eng. J. 2011, 166, 906–915. [Google Scholar] [CrossRef]
- Bhirud, A.P.; Sathaye, S.D.; Waichal, R.P.; Ambekar, J.D.; Park, C.J.; Kale, B.B. In-situ preparation of N-TiO 2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H 2 S splitting under solar light. Nanoscale 2015, 7, 5023–5034. [Google Scholar] [CrossRef]
- Vargas-Hernandez, C.; Lara, V.C.; Vallejo, J.E.; Jurado, J.F.; Giraldo, O. XPS, SEM and XRD investigations of CdSe films prepared by chemical bath deposition. Phys. Status Solidi 2005, 242, 1897–1901. [Google Scholar] [CrossRef]
- Liang, Y.; Kong, B.; Zhu, A.; Wang, Z.; Tian, Y. A facile and efficient strategy for photoelectrochemical detection of cadmium ions based on in situelectrodeposition of CdSe clusters on TiO2 nanotubes. Chem. Commun. 2012, 48, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, M.; Zhang, H.; Deng, J.; Yang, Z.; Ran, C.; Yao, X. Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells. Electrochim. Acta 2013, 108, 449–457. [Google Scholar] [CrossRef]
- Ayal, A.K.; Zainal, Z.; Lim, H.N.; Talib, Z.A.; Chang, S.-K.; Holi, A.M. Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode. Opt. Quantum Electron. 2017, 49, 5204. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Zhang, J.; Wang, K.; Qiu, Y.; Liang, Q.; Chen, Z. Efficient photoelectrochemical water splitting by gC 3 N 4/TiO 2 nanotube array heterostructures. Nano-Micro Lett. 2018, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Ismail, N.; Amin, M.S.; Mekewi, M. Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production. Front. Energy 2018, 12, 249–258. [Google Scholar] [CrossRef]
- Deshpande, M.P.; Garg, N.; Bhatt, S.V.; Sakariya, P.; Chaki, S. Characterization of CdSe thin films deposited by chemical bath solutions containing triethanolamine. Mater. Sci. Semicond. Process. 2013, 16, 915–922. [Google Scholar] [CrossRef]
- Hatam, E.G.; Ghobadi, N. Effect of deposition temperature on structural, optical properties and configuration of CdSe nanocrystalline thin films deposited by chemical bath deposition. Mater. Sci. Semicond. Process. 2016, 43, 177–181. [Google Scholar] [CrossRef]
- Kale, R.B.; Lokhande, C.D. Systematic Study on Structural Phase Behavior of CdSe Thin Films. J. Phys. Chem. B 2005, 109, 20288–20294. [Google Scholar] [CrossRef]
- Meng, Z.-D.; Zhu, L.; Ye, S.; Sun, Q.; Ullah, K.; Cho, K.Y.; Oh, W.-C. Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light. Nanoscale Res. Lett. 2013, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Ghayeb, Y.; Momeni, M.M. Efficient sunlight-driven photocatalytic activity of chromium TiO2 nanotube nanocomposites prepared by anodizing and chemical bath deposition. J. Mater. Sci. Mater. Electron. 2015, 26, 5335–5341. [Google Scholar] [CrossRef]
Temperature (°C) | Atomic Percentage (at %) | |||
---|---|---|---|---|
Ti | O | Cd | Se | |
20 | 40.77 | 58.45 | 0.41 | 0.37 |
40 | 39.62 | 56.66 | 1.90 | 1.82 |
50 | 38.16 | 55.84 | 3.03 | 2.97 |
60 | 36.27 | 51.83 | 6.04 | 5.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, C.W.; Samsudin, N.A.; Low, F.W.; Abd Samad, N.A.; Lau, K.S.; Chou, P.M.; Tiong, S.K.; Amin, N. Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity. Materials 2020, 13, 2533. https://doi.org/10.3390/ma13112533
Lai CW, Samsudin NA, Low FW, Abd Samad NA, Lau KS, Chou PM, Tiong SK, Amin N. Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity. Materials. 2020; 13(11):2533. https://doi.org/10.3390/ma13112533
Chicago/Turabian StyleLai, Chin Wei, Nurul Asma Samsudin, Foo Wah Low, Nur Azimah Abd Samad, Kung Shiuh Lau, Pui May Chou, Sieh Kiong Tiong, and Nowshad Amin. 2020. "Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity" Materials 13, no. 11: 2533. https://doi.org/10.3390/ma13112533
APA StyleLai, C. W., Samsudin, N. A., Low, F. W., Abd Samad, N. A., Lau, K. S., Chou, P. M., Tiong, S. K., & Amin, N. (2020). Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity. Materials, 13(11), 2533. https://doi.org/10.3390/ma13112533