In Vitro Study of Shear Bond Strength in Direct and Indirect Bonding with Three Types of Adhesive Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Sample Preparation
2.3. Thermocycling
2.4. Debonding Resistance Test
2.5. Adhesive Remnant Index
2.6. Statistical Analysis
3. Results
3.1. Shear Bond Strength
3.2. Adhesive Remnant Index
4. Discussion
5. Conclusions
- All self-etching samples showed significantly lower shear bond strength values when compared with the acid-etching groups. BO samples showed values below what is recommended for clinical use (5.9–7.8 MPa).
- The self-adhesive composite groups demonstrated similar values to those of the XT that acted as a control group, illustrating that this material had efficient forces, regardless of the reduction of one clinical step.
- There were no statistical differences between the indirect bonding technique groups when compared with their direct bonding analogs. Therefore, indirect bonding technique is a valid alternative bonding procedure.
- ARI scores suggested that the acid-etching samples (with the majority of scores between 2 and 3) created an effective bonding-enamel attachment but could lead to further enamel damage during the polishing procedure.
- Further clinical studies with the same materials are necessary.
Author Contributions
Funding
Conflicts of Interest
References
- Newman, G.V. Epoxy adhesives for orthodontic attachments: Progress report. Am. J. Orthod. 1965, 51, 901–912. [Google Scholar] [CrossRef]
- Al-khatieeb, M.M.; Mohammed, S.A.; Al-attar, A.M. Evaluation of a new orthodontic bonding system (Beauty Ortho Bond). J. Bagh Coll Dent. 2015, 27, 175–181. [Google Scholar] [CrossRef]
- Buyukyilmaz, T.; Usumez, S.; Karaman, A.I. Effect of self-etching primers on bond strength—Are they reliable. Angle Orthod. 2003, 73, 64–70. [Google Scholar] [PubMed]
- Reynolds, I.R.; von Fraunhofer, J.A. Direct bonding of orthodontic attachments to teeth: The relation of adhesive bond strength to gauze mesh size. Br. J. Orthod. 1976, 3, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Contreras-bulnes, R.; Montasser, M.A.; Vallittu, P.K. Orthodontics: Bracket Materials, Adhesives Systems, and Their Bond Strength. Biomed. Res. Int. 2016, 2016, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Lamper, T.; Nicoleta Ilie, K.C.H. Self-etch adhesives for the bonding of orthodontic brackets: Faster, stronger, safer. Clin. Oral Investig. 2014, 18, 313. [Google Scholar] [CrossRef] [PubMed]
- Graber, L.W.; Vanarsdall, R.L.; Vig, K.W.L.; Huang, G.J. Orthodontics: Current Principles and Techniques, 6th ed.; Elsevier: St Louis, MI, USA, 2017; pp. 812–867. [Google Scholar]
- Bishara, S.E.; VonWald, L.; Laffon, J.; Warren, J.J. Effect of a self-etch primer/adhesive on the shear bond strength of orthodontic brackets. Am. J. Orthod Dentofac Orthop. 2001, 119, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, M.; Matsui, A.; Gwinnett, A. Penetration of resin dental materials into enamel surfaces with reference to bonding. Arch. Oral Biol. 1978, 13, 61–70. [Google Scholar] [CrossRef]
- Hung, C.-Y.; Yu, J.-H.; Su, L.-W.; Uan, J.-Y.; Chen, Y.-C.; Lin, D.-J. Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable / Rechargeable Orthodontic Adhesive Resins Containing LiA1-F Layered Double. Materials 2019, 12, 3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, K.; Rzdo-do, M.; Germany, W. Effect Dentin of the Self Etching Dentin Primers on the Bonding Efficacy of a Adhesive Toshie KOIKE, Tokuji Sadao WAKUMOTO and Tohru HAYAKAWA * Department of Operative Dentinstry, Showa University, School of Dentistry, 2-1-1- Kitasenzoku, Ohta-ku Tok. Dent. Mater. J. 1989, 8, 86–92. [Google Scholar]
- Flores, T.; Mayoral, J.; Giner, L.; Puigdollers, A. Comparison of enamel-bracket bond strength using direct- and indirect-bonding techniques with a self-etching ion releasing S-PRG filler. Dent. Mater. J. 2015, 34, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiyagarajah, S.; Spary, D.J.; Rock, W.P. A clinical comparison of bracket bond failures in association with direct and indirect bonding. J. Orthod. 2006, 33, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.; Bravo, L.A.; Romero, M.; Ortíz, A.J.; Canteras, M. Effects of 3 adhesion promoters on the shear bond strength of orthodontic brackets: An in-vitro study. Am. J. Orthod Dentofacial Orthop. 2006, 129, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Ito, S.; Yuasa, T.; Muguruma, T.; Saito, T.; Mizoguchi, I. Bond Strength Comparison and Scanning Electron Microscopic Evaluation of Three Orthodontic Bonding Systems. Dent. Mater. J. 2008, 27, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.; Cohen, M.; Gianelly, A.; Dietz, V. A universal indirect bonding system for both metal and plastic brackets. Am. J. Orthod. 1972, 62, 236–244. [Google Scholar] [CrossRef]
- Thomas, R. Indirect bonding, simplicity in action. J. Clin. Orthod. 1979, 13, 93–105. [Google Scholar] [PubMed]
- Kalange, J.T. Indirect bonding: A comprehensive review of the advantages. World J. Orthod. 2004, 5, 301–307. [Google Scholar] [PubMed]
- Klocke, A.; Shi, J. Bond Strength with Custom Base Indirect Bonding Techniques. Angle Orthod. 2003, 73, 176–180. [Google Scholar] [PubMed]
- Hocevart, R.A.; Vincent, H.F. Indirect versus direct bonding: Bond strength and failure location. Am. J. Orthod Dentofac Orthop. 1988, 94, 367–371. [Google Scholar] [CrossRef]
- Koo, B.C.; Chung, C.-H.; Vanarsdall, R.L. Comparison of accuracy of bracket placement between direct and indirect bonding techniques. Am. J. Orthod Dentofac Orthop. 1999, 116, 346–351. [Google Scholar] [CrossRef]
- Songhi, A. Efficient and effective indirect bonding. Am. J. Orthod Dentofac Orthop. 1999, 115, 352–359. [Google Scholar] [CrossRef]
- Flores, T.; Mayoral, J.R.; Artés, M.; Llopis, J.; Puigdollers, A. Increase in enamel volume of premolars by remineralization with s-prg filler containing toothpaste following debonding of lingual buttons: An In-vitro nanometric study. Int. J. Sci. Res. 2017, 6, 539–541. [Google Scholar]
- Montasser, M.A.; Drummond, J.L. Reliability of the Adhesive Remnant Index Score System with Different Magnifications. Angle Orthod. 2009, 79, 733–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Araújo, M.; Oliveira, D.D.; Silveira, G.S.; de Fátima Ferreira, E.; Nogueira, A. Bond Strength and Failure Pattern of Orthodontic Tubes Adhered to a Zirconia Surface Submitted to Di ff erent Modes of Application of a Ceramic Primer. Materials 2019, 12, 1–9. [Google Scholar]
- Colombo, M.; Gallo, S.; Padovan, S.; Chiesa, M.; Poggio, C. Influence of Di ff erent Surface Pretreatments on Shear Bond Strength of an Adhesive Resin Cement to Various Zirconia Ceramics. Materials 2020, 13, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, G.; Oh, S.; Lim, B.; Lee, H.; Chung, S.H. Effect of Simplified Bonding on Shear Bond Strength between Ceramic Brackets and Dental Zirconia. Materials 2019, 12, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfondrini, M.F.; Preda, L.; Calliada, F.; Carbone, L.; Lungarotti, L.; Bernardinelli, L.; Gandini, P.; Scribante, A. Magnetic Resonance Imaging and Its E ff ects on Metallic Brackets and Wires: Does It Alter the Temperature and Bonding E ffi cacy of Orthodontic Devices. Materials 2019, 12, 3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shpack, N.; Geron, S.; Floris, I.; Davidovitch, M.; Brosh, T.; Dan Vardimon, A. Bracket Placement in Lingual vs Labial Systems and Direct vs Indirect Bonding. Angle Orthod. 2007, 77, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Ciuffolo, F.; Tenisci, N.; Pollutri, L. Modified bonding technique for a standardized and effective indirect bonding procedure. Am. J. Orthod Dentofac Orthop. 2012, 141, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Miles, P.G.; Weyant, R.J. A Comparison of Two Indirect Bonding Adhesives. Angle Orthod. 2005, 75, 1019–1023. [Google Scholar] [PubMed]
- Bishara, S.E.; Vonwald, L.; Laffoon, J.F.; Jacobsen, J.R. Effect of altering the type of enamel conditioner on shear bond strenght of a resin-reinforced glass ionomer adhesive. Am. J. Orthod Dentofac Orthop. 2000, 118, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Polat, O.; Karaman, A.I.; Buyukyilmaz, T. In Vitro Evaluation of Shear Bond Strengths and In Vivo Analysis of Bond Survival of Indirect-Bonding Resins. Angle Orthod. 2004, 74, 19–21. [Google Scholar]
- Parrish, B.C.; Katona, T.R.; Isikbay, S.C.; Stewart, K.T.; Kula, K.S. The effects of application time of a self-etching primer and debonding methods on bracket bond strength. Angle Orthod. 2012, 82, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Swetha, M.; Pai, V.S.; Sanjay, N.; Nandini, S. Indirect versus Direct Bonding—A Shear Bond Strength Comparison: An in vitro Study. J. Contemp Pr. 2011, 12, 232–238. [Google Scholar]
- Daub, J.; Berzins, D.W.; James, B.; Gerard, T. Bond Strength of Direct and Indirect Bonded Brackets after Thermocycling. Angle Orthod. 2006, 76, 295–300. [Google Scholar]
- Klocke, A.; Shi, J.; Vaziri, F. Effect of Time on Bond Strength in Indirect Bonding. Angle Orthod. 2004, 74, 245–250. [Google Scholar] [PubMed]
- Kalange, J.T. Ideal appliance placement with APC brackets and indirect bonding. J. Clin. Orthod. 1999, 33, 516–526. [Google Scholar] [PubMed]
- White, L.W. A new and improved indirect bonding technique. J. Clin. Orthod. 1999, 33, 17–23. [Google Scholar] [PubMed]
- White, L.W. An expedited indirect bonding technique. J. Clin. Orthod. 2001, 35, 36–41. [Google Scholar] [PubMed]
- McLaughlin, R.P.; Bennet, J.; Trevisi, H. Systemized Orthodontic Treatment Mechanics; Mosby: London, UK, 2001. [Google Scholar]
- Elekdag-turk, S.; Turk, T.; Isci, D.; Ozkalayci, N. Thermocycling Effects on Shear Bond Strength of a Self-Etching Primer. Angle Orthod. 2008, 78, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Kaneko, K.; Mori, H.; Kawakami, E.; Tsukahara, T.; Yamamoto, K. Enamel bonding of self-etching and phosphoric acid-etching orthodontic adhesives in simulated clinical conditions: Debonding force and enamel surface. Dent. Mater. J. 2009, 28, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuasa, T.; Iijima, M.; Ito, S.; Muguruma, T. Effects of long-term storage and thermocycling on bond strength of two self-etching primer adhesive systems. Eur. J. Orthod. 2010, 32, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitayama, S.; Nikaido, T.; Ikeda, M.; Foxton, R.M.; Tagami, J. Enamel Bonding of Self-etch and Phosphoric Acid-etch Orthodontic Adhesive Systems. Dent. Mater. J. 2007, 26, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Bishara, S.E.; Ostby, A.W.; Ajlouni, R.; Laffoon, J.F.; Warren, J.J. Early Shear Bond Strength of a One-step Self-adhesive on Orthodontic Brackets. Angle Orthod. 2006, 76, 689–693. [Google Scholar] [PubMed]
- Ascensión, V.; Bravo, L.; Romero, M.; Ortiz, A.; Canteras, M.; Math, B. A Comparison of the Shear Bond Strength of a Resin Cement and Two Orthodontic Resin Adhesive Systems. Angle Orthod. 2005, 75, 109–113. [Google Scholar]
- Goracci, C.; Margvelashvili, M.; Giovannetti, A.; Vichi, A.; Ferrari, M. Shear bond strength of orthodontic brackets bonded with a new self-adhering flowable resin composite. Clin. Oral Investig. 2013, 17, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.M. Enamel surfaces after orthodontic bracket debonding. Angle Orthod. 1995, 65, 103–110. [Google Scholar] [PubMed]
- Kim, S.; Park, W.; Son, W.; Ahn, H.; Ro, J. Enamel surface evaluation after removal of orthodontic composite remnants by intraoral sandblasting: A 3-dimensional surface profilometry study. Am. J. Orthod Dentofac Orthop. 2007, 132, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Buyukyilmaz, T.; Zachrisson, B.U. Improved orthodontic bonding to silver amalgam. Part 2. Lathe-cut, admixed, and spherical amalgams with different intermediate resins. Angle Orthod. 1998, 68, 337–344. [Google Scholar]
- Bishara, S.E.; Gordan, V.V.; Vonwald, L.; Jakobsen, J.R. Shear bond strength of composite, glass ionomer, and acidic primer adhesive systems. Am. J. Orthod Dentofac Orthop. 1999, 115, 24–28. [Google Scholar] [CrossRef]
Bonding Material | Manufacturer | Components | Composition |
---|---|---|---|
XT Transbond XT | 3M Unitek, Monrovia, California, USA | Etching Gel Primer Paste | 37% phosphoric acid, tetraethyleneglycol 1.39 dimethacrylate (TEGDMA), bisphenol A diglycidyl methacrylate (BIS-GMA); Bis-GMA, TEGDMA, silane-treated quartz, amorphous silica, camphorquinone |
BO Beauty Orthobond II | Shofu, Kyoto, Japan | Primer A (self-etching) Paste | Water, solvent, phosphoric acid monomer, ethanol, TEDGMA, surface pre-reacted glass-ionomer, filler, Bis-GMA, camphorquinone |
OC GC Ortho Connect | GC America, Alsip, Illinois, USA | Etching Gel Paste (self-adhesive) | 37% phosphoric acid (7.7.9-trimethyl-4.13-dioxo-3.14-dioxa-5.12-diazahexadecane-1.16-diyl bismethacrylate) |
Bonding Protocol | G1 | G2 | G3 | G4 | G5 | G6 |
---|---|---|---|---|---|---|
Adhesive | XT | BO | OC | XT | BO | OC |
Bonding Technique | Direct | Direct | Direct | Indirect | Indirect | Indirect |
Comparison | Mean (sd) | Median [Min–Max] |
---|---|---|
Overall | 9.7 (4.5) | 9.4 [2.7–20.2] |
Material | – | – |
XT a | 12.3 (4.1) | 12.5 [4.8–20.2] |
BO b | 5.2 (1.6) | 5.1 [2.7–8.7] |
OC a | 11.7 (3.4) | 11.7 [5.1–17.8] |
BT | – | – |
Direct | 10.5 (4.9) | 11.7 [2.7–20.2] |
Indirect | 8.9 (3.9) | 8.2 [3.3–18.6] |
Material:BT | – | – |
(G1) XT—Direct | 13.5 (4.0) | 13.7 [4.8–20.2] |
(G2) BO—Direct | 5.1 (2.0) | 4.5 [2.7–8.7] |
(G3) OC—Direct | 12.9 (3.0) | 13.3 [5.6–17.8] |
(G4) XT—Indirect | 11.1 (3.9) | 9.6 [6.9–18.6] |
(G5) BO—Indirect | 5.4 (1.2) | 5.4 [3.3–7.4] |
(G6) OC—Indirect | 10.5 (3.4) | 9.9 [5.1–17.3] |
Comparison | Difference | CI 95% | p-Value |
---|---|---|---|
Material | – | – | – |
XT–BO | 7.10 | 5.26; 8.94 | <0.001 |
OC–BO | 6.52 | 11.73; 8.10 | <0.001 |
XT–OC | 0.58 | −1.61; 2.77 | 1 |
BT | – | – | – |
Direct–indirect | 1.51 | −0.60; 3.63 | 0.160 |
Material: BT | – | – | – |
G1–G5 | 8.17 | 5.56; 10.79 | <0.001 |
G1–G6 | 3.01 | −0.16; 6.18 | 0.316 |
G1–G4 | 2.46 | −0.91; 5.83 | 0.871 |
G2–G3 | −7.88 | −10.08; −5.67 | <0.001 |
G2–G1 | −5.49 | −11.23; −5.74 | <0.001 |
G2–G5 | −0.31 | −1.75; 1.12 | 1 |
G2–G6 | −5.48 | 5.05; 10.53 | 0.001 |
G2–G4 | −6.03 | −8.74; −3.32 | 0.002 |
G3–G1 | −0.61 | −3.63; 2.42 | 1 |
G3–G5 | 7.57 | 5.54; 9.59 | <0.001 |
G3–G6 | 2.40 | −0.35; 5.15 | 0.958 |
G3–G4 | 1.85 | −1.15; 4.84 | 1 |
G5–G6 | −5.16 | −7.43; −2.89 | 0.002 |
G5–G4 | −5.72 | −8.30; −3.14 | <0.001 |
G6–G4 | −0.55 | −3.69; 2.59 | 1 |
Comparison | 0 | 1 | 2 | 3 | p-Value |
---|---|---|---|---|---|
Overall | 24 (32%) | 18 (24%) | 16 (21.3%) | 17 (22.6%) | |
Material | – | – | – | – | <0.001 |
XT a | 2 (8%) | 4 (16%) | 7 (28%) | 12 (48%) | – |
BO b | 19 (76%) | 4 (16%) | 1 (4%) | 1 (4%) | – |
OC a | 3 (12%) | 10 (40%) | 8 (32%) | 4 (16%) | – |
BT | – | – | – | – | 0.978 |
Direct | 11 (28.2%) | 13 (33.3%) | 6 (15.4%) | 9 (23.1%) | – |
Indirect | 13 (36.1%) | 5 (13.9%) | 10 (27.8%) | 8 (22.2%) | – |
Material:BT | – | – | – | – | – |
(G1) OC—Direct | 2 (15.4%) | 8 (61.5%) | 2 (15.4%) | 1 (7.7%) | – |
(G2) BO—Direct | 8 (61.5%) | 3 (23.1%) | 1 (7.7%) | 1 (7.7%) | – |
(G3) OC—Direct | 2 (15.4%) | 8 (61.5%) | 2 (15.4%) | 1 (7.7%) | – |
(G4) XT—Indirect | 1 (8.3%) | 2 (16.7%) | 4 (33.3%) | 5 (41.7%) | – |
(G5) BO—Indirect | 11 (91.7%) | 1 (8.3%) | 0 (0%) | 0 (0%) | – |
(G6) OC—Indirect | 1 (8.3%) | 2 (16.7%) | 6 (50%) | 3 (25%) | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, A.; Flores, T.; Moyano, J.; Artés, M.; Gil, F.J.; Puigdollers, A. In Vitro Study of Shear Bond Strength in Direct and Indirect Bonding with Three Types of Adhesive Systems. Materials 2020, 13, 2644. https://doi.org/10.3390/ma13112644
Iglesias A, Flores T, Moyano J, Artés M, Gil FJ, Puigdollers A. In Vitro Study of Shear Bond Strength in Direct and Indirect Bonding with Three Types of Adhesive Systems. Materials. 2020; 13(11):2644. https://doi.org/10.3390/ma13112644
Chicago/Turabian StyleIglesias, Angelica, Teresa Flores, Javier Moyano, Montserrat Artés, Francisco Javier Gil, and Andreu Puigdollers. 2020. "In Vitro Study of Shear Bond Strength in Direct and Indirect Bonding with Three Types of Adhesive Systems" Materials 13, no. 11: 2644. https://doi.org/10.3390/ma13112644
APA StyleIglesias, A., Flores, T., Moyano, J., Artés, M., Gil, F. J., & Puigdollers, A. (2020). In Vitro Study of Shear Bond Strength in Direct and Indirect Bonding with Three Types of Adhesive Systems. Materials, 13(11), 2644. https://doi.org/10.3390/ma13112644