Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Hydrothermal Treatments
2.4. Toluene Adsorption from Aqueous Phase
2.4.1. Adsorption Kinetics
2.4.2. Adsorption Isotherms
2.4.3. HPLC Analysis
3. Results and Discussion
3.1. Physico-Chemical Characterization
3.2. Monitoring the Hydrothermal Stability of SBA-15 and MCM-41 Silicas
3.3. Monitoring the Interactions of Toluene on Fumed, MCM-41, and SBA-15 Silicas
3.3.1. Toluene Adsorption on Pristine Samples
3.3.2. Toluene Adsorption on Silica Samples Treated Under Hydrothermal Conditions
3.4. Toluene Adsorption from Aqueous Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kostecki, P.T.; Calabrese, E.J. Hydrocarbon Contaminated Soils and Groundwater: Analysis, Fate, Environmental & Public Health Effects & Remediation; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Farhadian, M.; Vachelard, C.; Duchez, D.; Larroche, C. In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresour. Technol. 2008, 99, 5296–5308. [Google Scholar] [CrossRef] [PubMed]
- Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H. Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor. Bull. Chem. Soc. Jpn. 1982, 55, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Perego, C.; Bagatin, R.; Tagliabue, M.; Vignola, R. Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous Mesoporous Mater. 2013, 166, 37–49. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008, 14, 145–156. [Google Scholar] [CrossRef]
- Vignola, R.; Bagatin, R.; D’Auris, A.D.F.; Flego, C.; Nalli, M.; Ghisletti, D.; Millini, R.; Sisto, R. Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances. Chem. Eng. J. 2011, 178, 204–209. [Google Scholar] [CrossRef]
- Sacchetto, V.; Bisio, C.; Olivera, D.F.O.; Paul, G.; Gatti, G.; Braschi, I.; Berlier, G.; Cossi, M.; Marchese, L. Interactions of Toluene and n-Hexane on High Silica Zeolites: An Experimental and Computational Model Study. J. Phys. Chem. C 2015, 119, 24875–24886. [Google Scholar] [CrossRef]
- Sacchetto, V.; Gatti, G.; Paul, G.; Braschi, I.; Berlier, G.; Cossi, M.; Marchese, L.; Bagatin, R.; Bisio, C. The interactions of methyl tert-butyl ether on high silica zeolites: A combined experimental and computational study. Phys. Chem. Chem. Phys. 2013, 15, 13275. [Google Scholar] [CrossRef]
- Sacchetto, V.; Olivera, D.F.O.; Paul, G.; Gatti, G.; Braschi, I.; Marchese, L.; Bisio, C. On the Adsorption of Gaseous Mixtures of Hydrocarbons on High Silica Zeolites. J. Phys. Chem. C 2017, 121, 6081–6089. [Google Scholar] [CrossRef]
- Gatti, G.; Olivera, D.F.O.; Sacchetto, V.; Cossi, M.; Braschi, I.; Marchese, L.; Bisio, C. Experimental Determination of the Molar Absorption Coefficient of n -Hexane Adsorbed on High-Silica Zeolites. ChemPhysChem 2017, 18, 2374–2380. [Google Scholar] [CrossRef]
- Küntzel, J.; Ham, R.; Melin, T. Regeneration of hydrophobic zeolites with steam. Chem. Eng. Technol. 1999, 22, 991–994. [Google Scholar] [CrossRef]
- Qin, Q.; Xu, Y. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41. Microporous Mesoporous Mater. 2016, 232, 143–150. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Bispo, C.; Bion, N.; Ferreira, P.; Batonneau-Gener, I. Periodic Mesoporous Organosilicas as adsorbents for the organic pollutants removal in aqueous phase. Microporous Mesoporous Mater. 2014, 200, 117–123. [Google Scholar] [CrossRef]
- Zhao, X.S.; Ma, Q.; Lu, G. (Max) VOC Removal: Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon. Energy Fuels 1998, 12, 1051–1054. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Peng, Y.; Hu, F.; Li, K.; Song, H.; Li, X.; Zhang, Y.; Li, J. Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chem. Eng. J. 2018, 334, 191–197. [Google Scholar] [CrossRef]
- Ncube, T.; Reddy, K.S.K.; Al Shoaibi, A.; Srinivasakannan, C. Benzene, Toluene, m-Xylene Adsorption on Silica-Based Adsorbents. Energy Fuels 2017, 31, 1882–1888. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, S.; Zhang, W.; An, Z.; Chen, D. Dynamic adsorption of toluene on amino-functionalized SBA-15 type spherical mesoporous silica. RSC Adv. 2019, 9, 7196–7202. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.W.; Copeland, J.R.; Van Pelt, A.H.; Sievers, C. Stability of Amorphous Silica-Alumina in Hot Liquid Water. ChemSusChem 2013, 6, 2304–2315. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Zhao, D.; Melosh, N.; Feng, J.; Huo, Q.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wang, Y.; Wang, H.; Gao, J.; Qu, Z. Effect of Morphology and Pore Structure of SBA-15 on Toluene Dynamic Adsorption/Desorption Performance. Procedia Environ. Sci. 2013, 18, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Gun’Ko, V.M.; Mironyuk, I.; Zarko, V.; Voronin, E.; Turov, V.; Pakhlov, E.; Goncharuk, O.; Nychiporuk, Y.; Vlasova, N.; Gorbik, P.; et al. Morphology and surface properties of fumed silicas. J. Colloid Interface Sci. 2005, 289, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Atchudan, R.; Perumal, S.; Edison, T.N.J.I.; Lee, Y.R. Highly graphitic carbon nanosheets synthesized over tailored mesoporous molecular sieves using acetylene by chemical vapor deposition method. RSC Adv. 2015, 5, 93364–93373. [Google Scholar] [CrossRef]
- Trouvé, A.; Batonneau-Gener, I.; Valange, S.; Bonne, M.; Mignard, S. Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution. J. Hazard. Mater. 2012, 201, 107–114. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Domhnaill, S.C.O.; Neimark, A.V.; Schueth, F.; Unger, K.K. Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41. Langmuir 1995, 11, 4765–4772. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sayari, A. Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring. Adsorption 2000, 6, 47–51. [Google Scholar] [CrossRef]
- Yeh, Y.-Q.; Lin, H.-P.; Tang, C.-Y.; Mou, C.-Y. Mesoporous silica SBA-15 sheet with perpendicular nanochannels. J. Colloid Interface Sci. 2011, 362, 354–366. [Google Scholar] [CrossRef]
- Morishige, K.; Kanzaki, Y. Porous Structure of Ordered Silica with Cagelike Pores Examined by Successive Adsorption of Water and Nitrogen. J. Phys. Chem. C 2009, 113, 14927–14934. [Google Scholar] [CrossRef]
- Burneau, A.; Barres, O.; Gallas, J.P.; LaValley, J.C. Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 2. Characterization by infrared spectroscopy of the interactions with water. Langmuir 1990, 6, 1364–1372. [Google Scholar] [CrossRef]
- Gallas, J.-P.; Goupil, J.-M.; Vimont, A.; LaValley, J.-C.; Gil, B.; Gilson, J.-P.; Miserque, O. Quantification of Water and Silanol Species on Various Silicas by Coupling IR Spectroscopy and in-Situ Thermogravimetry. Langmuir 2009, 25, 5825–5834. [Google Scholar] [CrossRef]
- Gatti, G.; Olivera, D.F.O.; Paul, G.; Bagatin, R.; Carati, A.; Tagliabue, M.; Bisio, C.; Marchese, L.; Marco, T. On the adsorption of toluene on amorphous mesoporous silicas with tunable sorption characteristics. Dalton Trans. 2019, 48, 11781–11790. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A. Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. J. Phys. Chem. C 2007, 111, 8268–8277. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, Y.; Yang, H.; Yan, M.; Yu, C.; Tu, B.; Zhao, D. Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. J. Phys. Chem. B 2005, 109, 8723–8732. [Google Scholar] [CrossRef] [PubMed]
- Celer, E.B.; Kruk, M.; Zuzek, Y.; Jaroniec, M. Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores. J. Mater. Chem. 2006, 16, 2824. [Google Scholar] [CrossRef]
- Trombetta, M.; Armaroli, T.; Alejandre, A.G.; Solis, J.R.; Busca, G. An FT-IR study of the internal and external surfaces of HZSM5 zeolite. Appl. Catal. A 2000, 192, 125–136. [Google Scholar] [CrossRef]
- Vignola, R.; Bagatin, R.; D’Auris, A.D.F.; Massara, E.P.; Ghisletti, D.; Millini, R.; Sisto, R. Zeolites in a permeable reactive barrier (PRB): One-year of field experience in a refinery groundwater. Part 2: Zeolite characterization. Chem. Eng. J. 2011, 178, 210–216. [Google Scholar] [CrossRef]
Sample | SSABET 1 (m2 g−1) | VP 2 (cm3 g−1) | Vmesop 3 (cm3 g−1) | t 4 (nm) | |
---|---|---|---|---|---|
20–100 Å | |||||
Fumed Silica | 412 | 1.47 | 0.31 | - | |
MCM-41 | 1103 | 1.31 | 0.98 | 0.5 | |
MCM-41_8h | 888 | 1.07 | 0.79 | 0.5 | |
MCM-41_36h | 607 | 0.87 | 0.63 | 0.5 | |
20–65 Å | 65–120 Å | ||||
SBA-15 | 761 | 0.96 | 0.31 | 0.55 | 2.8 |
SBA-15_8h | 689 | 1.14 | 0.24 | 0.68 | 2.9 |
SBA-15_36h | 634 | 1.30 | 0.14 | 0.88 | 1.0 |
Sample | Q at 27 mbar (%) | Q at 45 mbar (%) | Vmesop (cm3 g−1) | |
---|---|---|---|---|
20–65 Å | 65–100 Å | |||
Fumed silica | 18 | 71 | 0.19 | 0.12 |
MCM-41 | 60 | 78 | 0.83 | 0.12 |
SBA-15 | 43 | 90 | 0.31 | 0.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittoni, C.; Gatti, G.; Braschi, I.; Buscaroli, E.; Golemme, G.; Marchese, L.; Bisio, C. Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation. Materials 2020, 13, 2690. https://doi.org/10.3390/ma13122690
Vittoni C, Gatti G, Braschi I, Buscaroli E, Golemme G, Marchese L, Bisio C. Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation. Materials. 2020; 13(12):2690. https://doi.org/10.3390/ma13122690
Chicago/Turabian StyleVittoni, Chiara, Giorgio Gatti, Ilaria Braschi, Enrico Buscaroli, Giovanni Golemme, Leonardo Marchese, and Chiara Bisio. 2020. "Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation" Materials 13, no. 12: 2690. https://doi.org/10.3390/ma13122690
APA StyleVittoni, C., Gatti, G., Braschi, I., Buscaroli, E., Golemme, G., Marchese, L., & Bisio, C. (2020). Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation. Materials, 13(12), 2690. https://doi.org/10.3390/ma13122690