Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Analysis of Real-Time Crosslinking Behavior
2.2.1. Real-Time FT-IR
2.2.2. Real-Time Rheological Properties
2.3. Measurements of Cured Hydrogel Film Properties
2.3.1. Gel Fraction and Swelling Ratio
2.3.2. Rh-B Loading and Release
2.3.3. Penetration Scratch Resistance via the Nanoscratch Test
3. Results and Discussion
3.1. Real-Time Crosslinking Dynamics of Hydrogels during UV Curing
3.2. Real-Time Crosslinking Behaviors of Hydrogels during Thermal Curing
3.3. Temperature Effect on the UV Curing Process of the Hydrogels
3.4. Swelling Ratio, Gel Fraction, and Rh-B Loading/Release Properties
3.5. Surface Mechanical Properties of Hydrogel Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuator B Chem. 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F.; et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 2008, 9, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A. Hydrogels for biomedical applications. Ann. N. Y. Acad. Sci. 2001, 944, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef] [Green Version]
- Peppas, N.A.; Keys, K.B.; Torres-Lugo, M.; Lowman, A.M. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 1999, 62, 81–87. [Google Scholar] [CrossRef]
- Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E. Drying and storage effects on poly (ethylene glycol) hydrogel mechanical properties and bioactivity. J. Biomed. Mater. Res. Part A 2014, 102, 3066–3076. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; McMichael, P.; Creagh-Flynn, J.; Zhou, D.; Gao, Y.; Li, X.; Wang, X.; Wang, W. Double-cross-linked hydrogels strengthened by UV irradiation from a hyperbranched PEG-based trifuctional polymer. ACS Macro Lett. 2018, 7, 509–513. [Google Scholar] [CrossRef]
- Kashima, M.; Cao, H.; Liu, H.; Meng, Q.; Wang, D.; Li, F.; Yang, H. Effects of the chain length of crosslinking agents on the electro-optical properties of polymer-dispersed liquid crystal films. Liq. Cryst. 2010, 37, 339–343. [Google Scholar] [CrossRef]
- Raeber, G.P.; Lutolf, M.P.; Hubbell, J.A. Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophys. J. 2005, 89, 1374–1388. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Upadhyay, M.; Adena, S.K.R.; Vasant, B.G.; Muthu, M.S. Hydrogels: An introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin J. Biomed. Eng. 2017, 4, 1037. [Google Scholar]
- Rocha-García, D.; Guerra-Contreras, A.; Rosales-Mendoza, S.; Palestino, G. Role of porous silicon/hydrogel composites on drug delivery. Open Mater. Sci. 2016, 3, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Mellott, M.B.; Searcy, K.; Pishko, M.V. Release of protein from highly cross-linked hydrogels of poly (ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 2001, 22, 929–941. [Google Scholar] [CrossRef]
- Mauri, E.; Rossi, F.; Sacchetti, A. Tunable drug delivery using chemoselective functionalization of hydrogels. Mater. Sci. Eng. C 2016, 61, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, J.; Han, X.; Liu, H. Multi-responsive hydrogels with UCST- and LCST-induced shrinking and controlled release behaviors of rhodamine B. Mater. Sci. Eng. C 2018, 82, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Li, S.; Xu, J.; Liu, H. Dual-responsive graphene oxide/poly(NIPAM-co-AA) hydrogel as an absorbent for Rhodamine B and imidacloprid. J. Chem. Eng. Data 2019, 64, 4054–4065. [Google Scholar] [CrossRef]
- Lin, C.C.; Anseth, K.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 2009, 26, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Bryant, S.J.; Anseth, K.S.; Lee, D.A.; Bader, D.L. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 2004, 22, 1143–1149. [Google Scholar] [CrossRef]
- Weber, L.M.; Lopez, C.G.; Anseth, K.S. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J. Biomed. Mater. Res. Part A 2009, 90, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Browning, M.B.; Wilems, T.; Hahn, M.; Cosgriff-Hernandez, E. Compositional control of poly (ethylene glycol) hydrogel modulus independent of mesh size. J. Biomed. Mater. Res. Part A 2011, 98, 268–273. [Google Scholar] [CrossRef]
- Kim, N.H.; Yoon, S.; Jung, K.I.; Lee, D.G.; Bang, J.; Jung, H.W. Crosslinking behaviors and mechanical properties of curable PDMS and PEG films with various contents of glycidyl methacrylate. J. Appl. Polym. Sci. 2019, 136, 47088. [Google Scholar] [CrossRef]
- Hwang, J.W.; Noh, S.M.; Kim, B.; Jung, H.W. Gelation and crosslinking characteristics of photopolymerized poly (ethylene glycol) hydrogels. J. Appl. Polym. Sci. 2015, 132, 41939. [Google Scholar] [CrossRef]
- Jung, K.I.; Lee, D.G.; Bong, K.W.; Noh, S.M.; Um, M.S.; Choi, W.J.; Kim, B.; Jung, H.W. Effects of solvents on rheological and crosslinking properties of photo-polymerized poly (ethylene glycol) hydrogels. Korean J. Chem. Eng. 2017, 34, 1517–1523. [Google Scholar] [CrossRef]
- O’Donnel, K.; Boyd, A.; Meenan, B.J. Controlling fluid diffusion and release through mixed-molecular-weight poly(ethylene) glycol diacrylate (PEGDA) hydrogels. Materials 2019, 12, 3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Lee, D.G.; Kim, D.Y.; Kim, H.J.; Kong, N.S.; Kim, J.C.; Noh, S.M.; Jung, H.W.; Park, Y.I. Thermal radical initiator derivatives based on O-imino-isourea: Synthesis, polymerization, and characterization. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3593–3600. [Google Scholar] [CrossRef]
- Consiglio, R.; Randall, N.X.; Bellaton, B.; Stebut, J.V. The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films. Thin Solid Films 1998, 332, 151–156. [Google Scholar] [CrossRef]
- Noh, S.M.; Lee, J.W.; Nam, J.H.; Byun, K.H.; Park, J.M.; Jung, H.W. Dual-curing behavior and scratch characteristics of hydroxyl funtionalized urethane methacrylate oligomer for automotive clearcoats. Prog. Org. Coat. 2012, 74, 257–269. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Measuring, Mechanistic Aspects of Scratch/Mar Behavior of Paint Coatings by Nanoscratching; ASTM D 7187-15; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Hergert, H.L.; Kurth, E.F. The infrared spectra of lignin and related compounds. I. Characteristic carbonyl and hydroxyl frequencies of some flavanones, flavones, chalcones and acetophenones. J. Am. Chem. Soc. 1953, 75, 1622–1625. [Google Scholar] [CrossRef]
- Socrates, G. Infrared Characteristic Group Frequencies Tables and Charts, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume 2, pp. 80–84. [Google Scholar]
- Adrus, N.; Ulbricht, M. Rheological studies on PNIPAAm hydrogel synthesis via in situ polymerization and on resulting viscoelastic properties. Reac. Funct. Polym. 2013, 73, 141–148. [Google Scholar] [CrossRef]
- Fanger, C.; Wack, H.; Ulbricht, M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable size “Cut-off” for the efficient and reversible immobilization of biomacromolecules. Macromol. Biosci. 2006, 6, 393–402. [Google Scholar] [CrossRef]
- Das, S.K.; Bhowal, J.; Das, A.R.; Guha, A.K. Adsorption behavior of rhodamine B on rhizopus oryzae biomass. Langmuir 2006, 22, 7265–7272. [Google Scholar] [CrossRef]
Polymers | PEG-330T (g) | PEG-750T (g) | PEG-330P (g) | PEG-750P (g) | |
---|---|---|---|---|---|
PEGMA (Monomer) | 0.522 | 0.324 | 0.522 | 0.324 | |
PEGDMA * (Crosslinker) | Mw = 330 | 0.478 | 0.478 | ||
Mw = 750 | 0.676 | 0.676 | |||
C-PenDCC (TRI) | 0.01 | 0.01 | - | - | |
DMPA (PI) | - | - | 0.01 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.; Lee, D.G.; Lee, S.; Park, J.; Jung, H.W. Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels. Materials 2020, 13, 3277. https://doi.org/10.3390/ma13153277
Sung J, Lee DG, Lee S, Park J, Jung HW. Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels. Materials. 2020; 13(15):3277. https://doi.org/10.3390/ma13153277
Chicago/Turabian StyleSung, Jungmoon, Dong Geun Lee, Sukchin Lee, Junyoung Park, and Hyun Wook Jung. 2020. "Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels" Materials 13, no. 15: 3277. https://doi.org/10.3390/ma13153277
APA StyleSung, J., Lee, D. G., Lee, S., Park, J., & Jung, H. W. (2020). Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels. Materials, 13(15), 3277. https://doi.org/10.3390/ma13153277