Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali–Silica Reaction Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Methods
3. Results and Discussion
3.1. Physical–Mechanical Properties
3.2. Determination of ASR Using the Uranyl Acetate Method
3.3. Microstructure Characterization
4. Conclusions
- The designed composition of the hybrid cement showed very good resistance to ASR, while containing a high amount of alkalis and siliceous residues from WG-waste. The expansion during the accelerated test was very low (under 0.1%) and did not negatively affect the mechanical properties of the prepared mortar samples. The compressive strength development continued to increase even after exposure to 1N NaOH at 80 °C.
- Despite the fact that the mortars prepared from hybrid cement contained the deleterious types of aggregate, the ASR products were not detected in contrast with mortars based on CEM I cement.
- Microstructure characterization revealed the ASR products only in the case of mortars with CEM I cement. The chemical composition of the binder phase in hydrated hybrid cement did not show significant changes in gels near the aggregates and the matrix itself.
- The increased alkali content in hybrid cement did not lead to a deleterious ASR expansion, and simultaneously, the performance was practically the same as that of the CEM III/B cement. Therefore, a sufficient slag content seems to be a key parameter for maintaining very low ASR expansion.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Donatello, S.; Maltseva, O.; Fernández-Jiménez, A.; Palomo, A. The Early Age Hydration Reactions of a Hybrid Cement Containing a Very High Content of Coal Bottom Ash. J. Am. Ceram. Soc. 2013, 97, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Ramirez, D.E.; De Gutiérrez, R.M.; Puertas, F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Constr. Build. Mater. 2017, 140, 119–128. [Google Scholar] [CrossRef]
- Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernandez-Jimenez, A. Hybrid alkaline cements. Part II: The clinker factor. Rev. Rom. Mater. 2013, 43, 74–80. [Google Scholar]
- Zivica, V. Alkali silicate admixture for cement composites incorporating pozzolan or blast-furnace slag. Cem. Concr. Res. 1993, 23, 1215–1222. [Google Scholar] [CrossRef]
- You-Zhi, C.; Xin-Cheng, P.; Chang-Hui, Y.; Qing-Jun, D. Alkali aggregate reaction in alkali slag cement mortars. J. Wuhan Univ. Technol. Sci. Ed. 2002, 17, 60–62. [Google Scholar] [CrossRef]
- Al-Otaibi, S. Durability of concrete incorporating GGBS activated by water-glass. Constr. Build. Mater. 2008, 22, 2059–2067. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024. [Google Scholar] [CrossRef]
- Xie, Z.; Xiang, W.; Xi, Y. ASR Potentials of Glass Aggregates in Water-Glass Activated Fly Ash and Portland Cement Mortars. J. Mater. Civ. Eng. 2003, 15, 67–74. [Google Scholar] [CrossRef]
- Ichikawa, T.; Miura, M. Modified model of alkali–silica reaction. Cem. Concr. Res. 2007, 37, 1291–1297. [Google Scholar] [CrossRef]
- Ichikawa, T. Alkali–silica reaction, pessimum effects and pozzolanic effect. Cem. Concr. Res. 2009, 39, 716–726. [Google Scholar] [CrossRef]
- Thomas, M. The effect of supplementary cementing materials on alkali–silica reaction: A review. Cem. Concr. Res. 2011, 41, 1224–1231. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Shi, C.; Shi, Z.; Hu, X.; Zhao, R.; Chong, L. A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 2015, 48, 621–628. [Google Scholar] [CrossRef]
- Thomas, M.D.A.; Innis, F.A. Effect of slag on expansion due to alkali-aggregate reaction in concrete. Aci. Mater. J. 1998, 95, 716–724. [Google Scholar]
- Richardson, I.G. Model structures for C-(A)-S-H(I). Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 903–923. [Google Scholar] [CrossRef] [Green Version]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodriguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Özçelik, V.O.; White, C.E. Nanoscale Charge-Balancing Mechanism in Alkali-Substituted Calcium–Silicate–Hydrate Gels. J. Phys. Chem. Lett. 2016, 7, 5266–5272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashani, A.; Provis, J.L.; Qiao, G.G.; Van Deventer, J.S. The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 2014, 65, 583–591. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Nanostructure of C-S-H: Current status. Adv. Cement Base. Mater. 1993, 1, 38–46. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, C.; Zhang, J.; Wan, S.; Zhang, Z.; Ou, Z. Alkali–silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cem. Concr. Res. 2018, 108, 10–19. [Google Scholar] [CrossRef]
- Pouhet, R.; Cyr, M. Alkali–silica reaction in metakaolin-based geopolymer mortar. Mater. Struct. 2014, 48, 571–583. [Google Scholar] [CrossRef]
- Cyr, M.; Pouhet, R. Resistance to alkali-aggregate reaction (AAR) of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Cambridge, UK, 2015. [Google Scholar]
- Shi, Z.; Lothenbach, B. The role of calcium on the formation of alkali–silica reaction products. Cem. Concr. Res. 2019, 126, 105898. [Google Scholar] [CrossRef]
Cement | Chemical Composition/wt. % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Na2O | K2O | MgO | SO3 | Fe2O3 | TiO2 | MnO | LOI | |
CEM I | 20.0 | 4.5 | 62.9 | 0.1 | 1.3 | 1.4 | 3.4 | 3.2 | 0.3 | 0.3 | 3.4 |
CEM III/B | 31.6 | 7.4 | 45.6 | 0.3 | 0.8 | 5.8 | 3.3 | 1.4 | 0.4 | 0.6 | 0.4 |
CEM III/C-H | 42.0 | 7.6 | 36.4 | 1.4 | 0.7 | 8.6 | 1.1 | 0.4 | 0.8 | 0.5 | 1.7 |
Place | Mortars | Elemental Composition/at. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
O | Na | Mg | Al | Si | Ca | K | Fe | Ca/Si | Al/Ca | ||
11 | CEM I + CA | 62.3 | 3.9 | 0.9 | 1.9 | 20.5 | 9.2 | – | 1.3 | 0.44 | 0.21 |
2 | CEM I + SS | 72.0 | 8.2 | 1.0 | 0.9 | 8.3 | 9.3 | 0.1 | 0.2 | 1.12 | 0.10 |
3 | CEM III/C-H + CA | 73.1 | 1.5 | 2.0 | 1.7 | 9.1 | 12.2 | 0.3 | 0.1 | 1.34 | 0.14 |
4 | CEM III/C-H + SS | 68.2 | 0.4 | 0.2 | 1.3 | 12.0 | 17.3 | 0.4 | 0.2 | 1.44 | 0.08 |
5 | CEM III/C-H + SS | 60.7 | 3.2 | 2.5 | 2.2 | 12.9 | 17.9 | 0.5 | 0.1 | 1.39 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalina, L.; Bílek, V., Jr.; Bradová, L.; Topolář, L. Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali–Silica Reaction Study. Materials 2020, 13, 3646. https://doi.org/10.3390/ma13163646
Kalina L, Bílek V Jr., Bradová L, Topolář L. Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali–Silica Reaction Study. Materials. 2020; 13(16):3646. https://doi.org/10.3390/ma13163646
Chicago/Turabian StyleKalina, Lukáš, Vlastimil Bílek, Jr., Lada Bradová, and Libor Topolář. 2020. "Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali–Silica Reaction Study" Materials 13, no. 16: 3646. https://doi.org/10.3390/ma13163646
APA StyleKalina, L., Bílek, V., Jr., Bradová, L., & Topolář, L. (2020). Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali–Silica Reaction Study. Materials, 13(16), 3646. https://doi.org/10.3390/ma13163646