Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NiCo2O4
2.2. Characterization
2.3. Electrochemical Measurement/Reaction Mechanism
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S. Air Pollution Is Killing More People Than Smoking—And Fossil Fuels Are Large to Blame. Pacific Standard. Available online: https://psmag.com/environment/air-pollution-is-killing-more-people-than-smoking-and-fossil-fuels-are-largely-to-blame (accessed on 5 February 2020).
- Xu, X.; Zhong, W.; Zhang, L.; Liu, G.; Du, Y. MoS2/NiS heterostructure grown on Nickel Foam as highly efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 17329–17338. [Google Scholar] [CrossRef]
- Groß, A. Computational modeling of electrocatalytic reactions. In Encyclopedia of Interfacial Chemistry; Elsevier: New York, NY, USA, 2018; pp. 455–465. ISBN 978-0-12-809894-3. [Google Scholar]
- Yuan, N.; Jiang, Q.; Li, J.; Tang, J. A review on non-noble metal based electrocatalysis for the oxygen evolution reaction. Arab. J. Chem. 2020, 13, 4294–4309. [Google Scholar] [CrossRef]
- Defilippi, C.; Shinde, D.V.; Dang, Z.; Manna, L.; Hardacre, C.; Greer, A.J.; D’Agostino, C.; Giordano, C. HfN nanoparticles: An unexplored catalyst for the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 15464–15470. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 2012, 16, 307–325. [Google Scholar] [CrossRef] [Green Version]
- Elayappan, V.; Shanmugam, R.; Chinnusamy, S.; Yoo, D.J.; Mayakrishnan, G.; Kim, K.; Noh, H.S.; Kim, M.K.; Lee, H. Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution. Appl. Surf. Sci. 2020, 505, 144642. [Google Scholar] [CrossRef]
- Kandiel, T.A. Iron-incorporated NiS/Ni(OH)2 composite as an efficient electrocatalyst for hydrogen evolution reaction from water in a neutral medium. Appl. Catal. A Gen. 2019, 586, 117226. [Google Scholar] [CrossRef]
- Feng, W.; Chen, H.; Zhang, Q.; Gao, R.; Zou, X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts. Chin. J. Catal. 2020, 41, 1692–1697. [Google Scholar] [CrossRef]
- Liu, X.-M.; Cui, X.; Dastafkan, K.; Wang, H.-F.; Tang, C.; Zhao, C.; Chen, A.; He, C.; Han, M.; Zhang, Q. Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 2020, 53, 290–302. [Google Scholar] [CrossRef]
- Hwang, J.; Noh, S.H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805. [Google Scholar] [CrossRef]
- Men, Y.; Li, P.; Zhou, J.; Chen, S.; Luo, W. Trends in alkaline hydrogen evolution activity on cobalt phosphide electrocatalysts doped with transition metals. Cell Rep. Phys. Sci. 2020, 100136. [Google Scholar] [CrossRef]
- Liang, X.; Wu, C.-M.L. Metal-free two-dimensional phosphorus carbide as an efficient electrocatalyst for hydrogen evolution reaction comparable to platinum. Nano Energy 2020, 71, 104603. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, T.; Cheng, F.; Zhu, M.; Cao, X.; Liang, S.; Cao, G.; Pan, A. Uniform MnCo2O4 porous dumbbells for lithium-ion batteries and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2018, 10, 8730–8738. [Google Scholar] [CrossRef] [PubMed]
- Bragg, W.H. The structure of magnetite and the spinels. Nature 1915, 95, 561. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Huang, G.; Guo, X.; Cao, X.; Tian, Q.; Sun, H. Formation of graphene-like 2D spinel MnCo2O4 and its lithium storage properties. J. Alloys Compd. 2017, 695, 2937–2944. [Google Scholar] [CrossRef]
- Park, M.-S.; Kim, J.; Kim, K.J.; Lee, J.-W.; Kim, J.H.; Yamauchi, Y. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Phys. Chem. Chem. Phys. 2015, 17, 30963–30977. [Google Scholar] [CrossRef] [Green Version]
- Tatarchuk, T.; Bououdina, M.; Judith Vijaya, J.; John Kennedy, L. Spinel ferrite nanoparticles: Synthesis, crystal structure, properties, and perspective applications. In Nanophysics, Nanomaterials, Interface Studies, and Applications; Fesenko, O., Yatsenko, L., Eds.; Springer Proceedings in Physics; Springer International Publishing: Cham, Switzerland, 2017; Volume 195, pp. 305–325. ISBN 978-3-319-56244-5. [Google Scholar]
- Jouini, A.; Yoshikawa, A.; Brenier, A.; Fukuda, T.; Boulon, G. Optical properties of transition metal ion-doped MgAl2O4 spinel for laser application. Phys. Stat. Sol. 2007, 4, 1380–1383. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, J.; Wolverton, C. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes. Phys. Chem. Chem. Phys. 2013, 15, 6486–6498. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hasin, P.; Wu, Y. NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ma, J.; Li, C. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem. Commun. 2012, 48, 4465–4467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yan, H.; Lu, Y.; Qiu, K.; Wang, C.; Zhang, Y.; Liu, X.; Luo, J.; Luo, Y. NiCo2O4 nanostructure materials: Morphology control and electrochemical energy storage. Dalton Trans. 2014, 43, 15887–15897. [Google Scholar] [CrossRef]
- Bhojane, P.; Sen, S.; Shirage, P.M. Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material. Appl. Surf. Sci. 2016, 377, 376–384. [Google Scholar] [CrossRef]
- Li, L.; Peng, S.; Cheah, Y.; Teh, P.; Wang, J.; Wee, G.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. Eur. J. 2013, 19, 5892–5898. [Google Scholar] [CrossRef]
- Uke, S.J.; Akhare, V.P.; Meshram-Mardikar, S.P.; Bodade, A.B.; Chaudhari, G.N. PEG assisted hydrothermal fabrication of undoped and Cr doped NiCo2O4 nanorods and their electrochemical performance for supercapacitor application. Adv. Sci. Eng. Med. 2019, 11, 357–366. [Google Scholar] [CrossRef]
- Devaguptapu, S.V.; Hwang, S.; Karakalos, S.; Zhao, S.; Gupta, S.; Su, D.; Xu, H.; Wu, G. Morphology control of carbon-free spinel NiCo2O4 catalysts for enhanced bifunctional oxygen reduction and evolution in alkaline media. ACS Appl. Mater. Interfaces 2017, 9, 44567–44578. [Google Scholar] [CrossRef]
- Jin, C.; Lu, F.; Cao, X.; Yang, Z.; Yang, R. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. J. Mater. Chem. A 2013, 1, 12170–12177. [Google Scholar] [CrossRef]
- Qin, Z.; Cheng, Q.; Lu, Y.; Li, J. Facile synthesis of hierarchically mesoporous NiCo2O4 nanowires for sensitive nonenzymatic glucose detection. Appl. Phys. A 2017, 123, 492. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, G.; Yu, W.; Liu, D.; Liu, Y.; Li, L.; Huang, Q. Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials. MRC 2017, 7, 90–96. [Google Scholar] [CrossRef]
- Li, C.; Ge, Y.; Jiang, X.; Zhang, Z.; Yu, L. The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2019, 30, 3124–3136. [Google Scholar] [CrossRef]
- Khalid, S.; Cao, C.; Wang, L.; Zhu, Y. Microwave assisted synthesis of porous NiCo2O4 microspheres: Application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 2016, 6, 22699. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Wang, Z.; Guo, H.; Li, Y. A novel NiCo2O4 anode morphology for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 11970–11975. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, D.; Xu, J.; Lu, Y.; Liu, Y.; Qiu, K.; Zhang, Y.; Luo, Y. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 2014, 9, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béjar, J.; Álvarez-Contreras, L.; Ledesma-García, J.; Arjona, N.; Arriaga, L.G. Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. J. Electroanal. Chem. 2019, 847, 113190. [Google Scholar] [CrossRef]
- Wei, B.; Wu, J.; Mei, G.; Qi, Z.; Hu, W.; Wang, Z. NiCo2O4 nanowire arrays rich in oxygen deficiencies for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 6612–6617. [Google Scholar] [CrossRef]
- Larbi, T.; Doll, K.; Amlouk, M. Temperature dependence of Raman spectra and first principles study of NiMn2O4 magnetic spinel oxide thin films. Application in efficient photocatalytic removal of RhB and MB dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 117–124. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G.R. Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys. 2015, 165, 235–244. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Kuzmin, A.; Sildos, I.; Pärs, M. Polarisation dependent Raman study of single-crystal nickel oxide. Open Phys. 2011, 9, 1096–1099. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, W.; Long, B.; Li, H.; Qiu, W.; Zhao, F.; Tong, Y.; Ji, H. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. J. Mater. Chem. A 2016, 4, 3648–3654. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Chen, J.; Pang, Q.; Shen, P. Spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 16120–16131. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Xu, Y.; Wu, J.; Tian, J.-H.; Yang, R. Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions. Int. J. Hydrogen Energy 2016, 41, 8847–8854. [Google Scholar] [CrossRef]
- Lv, X.; Zhu, Y.; Jiang, H.; Yang, X.; Liu, Y.; Su, Y.; Huang, J.; Yao, Y.; Li, C. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 2015, 44, 4148–4154. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.-L.; Shang, X.; Gao, W.-K.; Dong, B.; Li, X.; Chi, J.-Q.; Liu, Y.-R.; Chai, Y.-M.; Liu, C.-G. Ternary MnO2/NiCo2O4/NF with hierarchical structure and synergistic interaction as efficient electrocatalysts for oxygen evolution reaction. J. Alloys Compd. 2017, 719, 314–321. [Google Scholar] [CrossRef]
- Ganguli, S.; Das, S.; Kumari, S.; Inta, H.R.; Tiwari, A.K.; Mahalingam, V. Effect of intrinsic properties of anions on the electrocatalytic activity of NiCo2O4 and NiCo2OxS4-x grown by chemical bath deposition. ACS Omega 2018, 3, 9066–9074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Sun, G.; Wang, L.; Bai, L.; Su, L.; Wang, Y.; Du, Q.; Shao, G. 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 25267–25276. [Google Scholar] [CrossRef]
- Gong, Y.; Pan, H.; Xu, Z.; Yang, Z.; Lin, Y.; Zhang, M. A Co2O4 (A=Ni, Zn, Mn) nanostructure arrays grown on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 14360–14368. [Google Scholar] [CrossRef]
Sample | η1 [mV] | η10 [mV] | Tafel Slope [mV/dec] | R2 [Ω] | ∆η10 [%] | ∆η20 [%] | |
---|---|---|---|---|---|---|---|
RuO2 | 312 | 491 | 136 | 6.40 | 0.56 | 4.26 | |
Precursor | 340 | 446 | 112 | 5.35 | 1.15 | 1.09 | |
NiCo2O4 | a300 | 346 | 420 | 101 | 3.52 | 1.19 | 0.57 |
a400 | 328 | 420 | 106 | 4.85 | 1.13 | 2.13 | |
i600 | 346 | 430 | 97 | 3.89 | 1.75 | 0.00 | |
i800 | 359 | 454 | 103 | 4.95 | 0.57 | 0.55 |
Architecture of the Sample | η [mV] (at 10 mAcm−2) | Tafel Slope [mV/dec] | Persistence of Overpotential [%] | References |
---|---|---|---|---|
Rod-like | 420 | 97 | 99 (10.5 h, 10 mAcm−2) 100 (5 h, 20 mAcm−2) | This work |
Nanoflowers | 383 | 137 | 47 (1 h, 6.8 mVcm−2) | [46] |
Hollow Nanospheres | 428 | 141 | 31 (1 h, 3.5 mVcm−2) | |
520 | 150 | 96 (12 h, 1.76 V) | [47] | |
Urchin Nanospheres | 441 (at 5 mAcm−2) | 103 | 91 (12 h, 1.76 V) | |
Nanoparticles | 422 | 136 | - | [48] |
Nanoflakes | 500 | 119 | - | [49] |
430 | 76 | 87 (24 h, 10 mAcm−2) | [50] | |
360 | 131 | - | [51] | |
Nanowires | 271 | 172 | - | [52] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymerska, A.; Kukułka, W.; Biegun, M.; Mijowska, E. Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. Materials 2020, 13, 3918. https://doi.org/10.3390/ma13183918
Dymerska A, Kukułka W, Biegun M, Mijowska E. Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. Materials. 2020; 13(18):3918. https://doi.org/10.3390/ma13183918
Chicago/Turabian StyleDymerska, Anna, Wojciech Kukułka, Marcin Biegun, and Ewa Mijowska. 2020. "Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction" Materials 13, no. 18: 3918. https://doi.org/10.3390/ma13183918
APA StyleDymerska, A., Kukułka, W., Biegun, M., & Mijowska, E. (2020). Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. Materials, 13(18), 3918. https://doi.org/10.3390/ma13183918