An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
Abstract
:1. Introduction
2. Electrical Conductivity of Minerals
2.1. Electrical Impedance Spectroscopy
2.2. Electrical Conduction Mechanisms in Mantle Minerals
3. High-Pressure Apparatuses for Conductivity Measurements of Minerals and Rocks of Upper Mantle and Mantle Transition Zone
3.1. YJ-3000t Multi-Anvil Press
3.2. Kawai-1000t Multi-Anvil Press
3.3. The Electrical Cell by COMPRES
4. Electrical Conductivity of Major Minerals in the Upper Mantle and Mantle Transition Zone
4.1. Electrical Conductivity of Olivine
4.2. Electrical Conductivity of Pyroxene
4.3. Electrical Conductivity of Garnet
4.4. Electrical Conductivity of Wadsleyite and Ringwoodite
5. Some Remarks on the Evaluation of the Electrical Conductivity of Mantle Minerals
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CPE | Constant phase element |
COMPRES | Consortium for Material Properties Research in Earth Sciences |
EIS | Electrical impedance spectroscopy |
EC | Electrical conductivity |
FTIR | Fast Fourier infra-red |
HP | High pressure |
HT | High temperature |
HTHPSEI | High-temperature and High-pressure Study of the Earth’s Interior |
NAM | Nominally anhydrous mineral |
WC | Tungsten carbide |
Nomenclature
σ (S/m) | Complex electrical conductivity |
σo (S/m) | Pre-exponential factor |
ΔE (kJ/mol) | Activation energy |
ΔH (kJ/mol) | Activation enthalpy |
ΔV (cm3/mol) | Activation volume |
Cw (ppm) | Water content (in H/106Si) |
(Pa) | Oxygen fugacity |
Z* (Ω) | Complex impedance |
B | Isothermal bulk modulus |
β | Volume thermal expansion coefficient |
References
- Utada, H.; Koyama, T.; Shimizu, H.; Chave, A.D. A semi-global reference model for electrical conductivity in the mid-mantle beneath the North Pacific region. Geophys. Res. Lett. 2003, 30, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Tada, N.; Matsuno, T.; Liang, P.; Li, R.; Zhang, L.; Shimizu, H.; Abe, N.; Hirano, N.; Ichiki, M.; et al. Electrical conductivity of old oceanic mantle in the northwestern Pacific I: 1-D profiles suggesting differences in thermal structure not predictable from a plate cooling model. Earth Planets Space 2017, 69. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Karato, S. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet. Sci. Lett. 2009, 287, 277–283. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Li, H.; Wu, L.; Hui, K.; Jiang, J.; Sun, W. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochem. Geophys. Geosyst. 2016, 17, 2394–2407. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Dai, L.; Shan, S.; Zhu, C. Electrical conductivity of albite at high temperatures and high pressures. Am. Miner. 2011, 96, 1821–1827. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Dai, L.; Shan, S.; Zhu, C. Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys. Chem. Miner. 2013, 40, 51–62. [Google Scholar] [CrossRef]
- Lin, J.; Weir, S.; Jackson, D.; Evans, W.; Vohra, Y.; Qiu, W.; Yoo, C. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition. Geophys. Res. Lett. 2007, 34, L16305. [Google Scholar] [CrossRef] [Green Version]
- Ohta, K.; Onoda, S.; Hirose, K.; Sinmyo, R.; Shimizu, K.; Sata, N.; Ohishi, Y.; Yasuhara, A. The electrical conductivity of post-perovskite in Earth’s D″ layer. Science 2008, 320, 89–91. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Yi, L.; Matsuzaki, T.; Yoshino, T. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J. Geophys. Res. Solid Earth 2010, 115, B09211. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yoshino, T.; Katayama, I. Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys. Earth Planet. Inter. 2011, 188, 69–81. [Google Scholar] [CrossRef]
- Huang, X.; Xu, Y.; Karato, S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 2005, 434, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mookherjee, M.; Xu, Y.; Karato, S. The effect of water on the electrical conductivity of olivine. Nature 2006, 443, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Manthilake, M.; Matsuzaki, T.; Yoshino, T.; Yamashita, S.; Ito, E.; Katsura, T. Electrical conductivity of wadsleyite as a function of temperature and water content. Phys. Earth Planet. Inter. 2009, 174, 10–18. [Google Scholar] [CrossRef]
- Pommier, A.; Leinenweber, K.; Tasaka, M. Experimental investigation of the electrical behavior of olivine during partial melting under pressure and application to the lunar mantle. Earth Planet. Sci. Lett. 2015, 425, 242–255. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Dai, L.; Li, H.; Hui, K.; Sun, W. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones. J. Geophys. Res. Solid Earth 2017, 122, 2751–2762. [Google Scholar] [CrossRef]
- Sun, W.; Dai, L.; Li, H.; Hu, H.; Wu, L.; Jiang, J. Electrical conductivity of mudstone (before and after dehydration at high PT) and a test of high conductivity layers in the crust. Am. Miner. 2017, 102, 2450–2456. [Google Scholar] [CrossRef]
- Hu, H.; Dai, L.; Li, H.; Sun, W.; Li, B. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole: Implications for high conductivity anomalies in subduction zones and continental crust. Earth Planet. Sci. Lett. 2018, 498, 27–37. [Google Scholar] [CrossRef]
- Dai, L.; Zhuang, Y.; Li, H.; Wu, L.; Hu, H.; Liu, K.; Yang, L.; Pu, C. Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. J. Mater. Chem. C 2017, 5, 12157–12162. [Google Scholar] [CrossRef]
- Dai, L.; Liu, K.; Li, H.; Wu, L.; Hu, H.; Zhuang, Y.; Yang, L.; Pu, C.; Liu, P. Pressure-induced irreversible metallization accompanying the phase transitions in Sb2S3. Phys. Rev. B 2018, 97, 024103. [Google Scholar] [CrossRef]
- Freitas, D.; Manthilake, G. Electrical conductivity of hydrous silicate melts: Implications for the bottom-up hydration of Earth’s upper mantle. Earth Planet. Sci. Lett. 2019, 523, 115712. [Google Scholar] [CrossRef]
- Fei, H.; Wiedenbeck, M.; Yamazaki, D.; Katsura, T. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 2013, 498, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Novella, D.; Jacobsen, B.; Weber, P.; Tyburczy, J.; Ryerson, F.; Du Frane, W. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. Sci. Rep. 2017, 7, 5344. [Google Scholar] [CrossRef]
- Jung, H.; Karato, S. Water-induced fabric transitions in olivine. Science 2001, 293, 1460–1463. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Jung, H. Lattice-preferred orientation of amphibole, chlorite, and olivine found in hydrated mantle peridotites from Bjørkedalen, southwestern Norway, and implications for seismic anisotropy. Tectonophysics 2019, 750, 137–152. [Google Scholar] [CrossRef]
- Wei, S.; Wiens, D.; Zha, Y.; Plank, T.; Webb, S.; Blackman, D.; Dunn, R.; Conder, J. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature 2015, 518, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Cline, C.J., II; Faul, U.; David, E.; Berry, A.; Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 2018, 555, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, Y.; Maruyama, G.; Nishi, M. Growth kinetics of forsterite reaction rims at high-pressure. Phys. Earth Planet. Inter. 2016, 257, 220–229. [Google Scholar] [CrossRef]
- Cerpa, N.; Wada, I.; Wilson, C. Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction. J. Geophys. Res. Solid Earth 2017, 122, 6247–6268. [Google Scholar] [CrossRef]
- Masotta, M.; Mollo, S.; Nazzari, M.; Tecchiato, V.; Scarlato, P.; Papale, P.; Bachmann, O. Crystallization and partial melting of rhyolite and felsite rocks at Krafla volcano: A comparative approach based on mineral and glass chemistry of natural and experimental products. Chem. Geol. 2018, 483, 603–618. [Google Scholar] [CrossRef]
- Peslier, A.; Hervig, R.; Yang, S.; Humayun, M.; Barnes, J.; Irving, A.; Brandon, A. Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochim. Cosmochim. Acta 2019, 266, 382–415. [Google Scholar] [CrossRef]
- Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 1990, 347, 272–273. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. Influence of FeO and H on the electrical conductivity of olivine. Phys. Earth Planet. Inter. 2014, 237, 73–79. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. Influence of oxygen fugacity on the electrical conductivity of hydrous olivine: Implications for the mechanism of conduction. Phys. Earth Planet. Inter. 2014, 232, 57–60. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Phys. Earth Planet. Inter. 2014, 232, 51–56. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett. 2014, 408, 79–86. [Google Scholar] [CrossRef]
- Katsura, T.; Baba, K.; Yoshino, T.; Kogiso, T. Electrical conductivity of the oceanic asthenosphere and its interpretation based on laboratory measurements. Tectonophysics 2017, 717, 162–181. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proc. Jpn. Acad. 2009, 85, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Karato, S. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys. Earth Planet. Inter. 2009, 176, 83–88. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Hu, H.; Shan, S.; Jiang, J.; Hui, K. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib. Miner. Petrol. 2012, 163, 689–700. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Hu, H.; Jiang, J.; Hui, K.; Shan, S. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 2013, 608, 1086–1093. [Google Scholar] [CrossRef]
- Xu, Y.; Poe, B.; Shankland, T.; Rubie, D. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 1998, 280, 1415–1418. [Google Scholar] [CrossRef]
- Xu, Y.; McCammon, C.; Poe, B. The effect of alumina on the electrical conductivity of silicate perovskite. Science 1998, 282, 922–924. [Google Scholar] [CrossRef]
- Poe, B.; Xu, Y. In situ complex impedance spectroscopy of mantle minerals measured at 20 GPa and 1400 °C. Phase Transit. 1999, 68, 453–466. [Google Scholar] [CrossRef]
- Xu, Y.; Shankland, T. Electrical conductivity of orthopyroxene and its high pressure phases. Geophys. Res. Lett. 1999, 26, 2645–2648. [Google Scholar] [CrossRef]
- Xu, Y.; Shankland, T.; Poe, B. Laboratory-based electrical conductivity in the Earth’s mantle. J. Geophys. Res. Solid Earth 2000, 105, 27865–27875. [Google Scholar] [CrossRef]
- Xu, Y.; Shankland, T.; Duba, A. Pressure effect on electrical conductivity of mantle olivine. Phys. Earth Planet. Inter. 2000, 118, 149–161. [Google Scholar] [CrossRef]
- Laštovičková, M. Laboratory measurements of electrical properties of rocks and minerals. Geophys. Surv. 1983, 6, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.J.; Tyburczy, J.A. Frequency dependent electrical properties of polycrystalline olivine compacts. J. Geophys. Res. 1991, 96. [Google Scholar] [CrossRef]
- Nover, G. Electrical properties of crustal and mantle rocks—A review of laboratory measurements and their explanation. Surv. Geophys. 2005, 26, 593–651. [Google Scholar] [CrossRef]
- Yoshino, T. Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 2010, 31, 163–206. [Google Scholar] [CrossRef] [Green Version]
- Saltas, V.; Vallianatos, F.; Gidarakos, E. Charge transport in diatomaceous earth studied by broadband dielectric spectroscopy. Appl. Clay Sci. 2013, 80–81, 226–235. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Sun, W.; Li, H.; Liu, C.; Wang, M. Influence of high conductive magnetite impurity on the electrical conductivity of dry olivine aggregates at high temperature and high pressure. Minerals 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Saltas, V. Application of the cBΩ model to the calculation of diffusion parameters of He in olivine. Phys. Chem. Miner. 2014, 41, 181–188. [Google Scholar] [CrossRef]
- Karato, S.; Wang, D. Electrical conductivity of minerals and rocks. In Physics and Chemistry of the Deep Earth, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Pommier, A.; Leinenweber, K.D. Electrical cell assembly for reproducible conductivity experiments in the multi-anvil. Am. Miner. 2018, 103, 1298–1305. [Google Scholar] [CrossRef]
- Xie, H. Introduction to Science of the Earth Interior Material; Peking Science Press: Beijing, China, 1997. [Google Scholar]
- Zheng, H.; Xie, H.; Xu, Y.; Song, M.; Guo, J.; Zhang, Y. The electrical conductivity of H2O at 0.21–4.18 GPa and 20–350 °C. Sci. Bull. 1997, 42, 969–976. [Google Scholar] [CrossRef]
- Zheng, H.; Xie, H.; Xu, Y.; Song, M.; Guo, J.; Zhang, Y. Measurement of electrical conductivity of 0.001 mol NaCl solution under high pressures. Sci. Bull. 1997, 42, 1563–1566. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Yi, L.; Shi, B. The electrical conductivity of upper-mantle rocks: Water content in the upper mantle. Phys. Chem. Miner. 2008, 35, 157–162. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Yu, Y.; Karato, S. Electrical conductivity of amphibole-bearing rocks: Influence of dehydration. Contrib. Miner. Petrol. 2012, 164, 17–25. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Liu, C.; Su, G.; Shan, S. Experimental measurement on the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities. High Press. Res. 2006, 26, 193–202. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Deng, H.; Liu, C.; Su, G.; Shan, S.; Zhang, L.; Wang, R. In-situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure. J. Phys. Chem. Solids 2008, 69, 101–110. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Li, C.; Hu, H.; Shan, S. The electrical conductivity of dry polycrystalline olivine compacts at high temperatures and pressures. Miner. Mag. 2010, 74, 849–857. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Li, H.; Jiang, J.; Hui, K. Influence of temperature, pressure, and chemical composition on the electrical conductivity of granite. Am. Miner. 2014, 99, 1420–1428. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Li, H.; Hui, K.; Jiang, J.; Li, J.; Sun, W. Electrical conductivity of gabbro: The effects of temperature, pressure and oxygen fugacity. Eur. J. Miner. 2015, 27, 215–224. [Google Scholar] [CrossRef]
- Dai, L.; Jiang, J.; Li, H.; Hu, H.; Hui, K. Electrical conductivity of hydrous natural basalt at high temperatures and high pressures. J. Appl. Geophys. 2015, 112, 290–297. [Google Scholar] [CrossRef]
- Dai, L.; Sun, W.; Li, H.; Hu, H.; Wu, L.; Jiang, J. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures. Solid Earth 2018, 9, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Dai, L.; Li, H.; Jiang, J.; Hui, K. Electrical conductivity of K-feldspar at high temperature and high pressure. Miner. Petrol. 2014, 108, 609–618. [Google Scholar] [CrossRef]
- Hu, H.; Dai, L.; Li, H.; Hui, K.; Li, J. Temperature and pressure dependence of electrical conductivity in synthetic anorthite. Solid State Ion. 2015, 276, 136–141. [Google Scholar] [CrossRef]
- Hui, K.; Zhang, H.; Li, H.; Dai, L.; Hu, H.; Jiang, J.; Sun, W. Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: Evidence of grain boundary transport. Solid Earth 2015, 6, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- Hui, K.; Dai, L.; Li, H.; Hu, H.; Jiang, J.; Sun, W.; Zhang, H. Experimental study on the electrical conductivity of pyroxene andesite at high temperature and high pressure. Pure Appl. Geophys. 2017, 174, 1033–1041. [Google Scholar] [CrossRef]
- Sun, W.; Dai, L.; Li, H.; Hu, H.; Jiang, J.; Hui, K. Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures. Miner. Petrol. 2014, 111, 853–863. [Google Scholar] [CrossRef]
- Sun, W.; Dai, L.; Li, H.; Hu, H.; Liu, C. Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications. J. Miner. Petrol. Sci. 2019, 114, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Dai, L.; Li, H.; Hu, H.; Liu, C.; Wang, M. Effect of temperature, pressure and chemical compositions on the electrical conductivity of schist: Implications for electrical structures under the Tibetan plateau. Materials 2019, 12, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Li, H.; Hu, H.; Shan, S. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J. Geophys. Res. Solid Earth 2008, 113, B12211. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Li, H.; Hu, H.; Shan, S. Novel technique to control oxygen fugacity during high-pressure measurements of grain boundary conductivities of rocks. Rev. Sci. Instrum. 2009, 80, 033903. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Hu, H.; Shan, S. In-situ control of oxygen fugacity for laboratory measurements of electrical conductivity of minerals and rocks in multi-anvil press. Chin. Phys. B 2011, 20, 049101. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Hou, W.; Xu, H.; Guo, J.; Wang, Z.; Zhao, H.; Wang, R.; Huang, E.; Xie, H. Measurements of ultrasonic wave velocities at high temperature and high pressure for window glass, pyrophyllite, and kimberlite up to 1400 °C and 5.5 GPa. High Temp. High Press. 1994, 26, 375–384. [Google Scholar]
- Liu, Y.; Xie, H.; Zhou, W.; Guo, J. A method for experimental determination of compressional velocities in rocks and minerals at high pressure and high temperature. J. Phys. Condens. Matter 2002, 14, 11381–11384. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, W.; Zhu, M.; Liu, Y.; Zhao, Z.; Guo, J. Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure. J. Phys. Condens. Matter 2002, 14, 11359–11363. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Wang, Z.; Gong, C.; Guo, J.; Zhou, W.; Xie, H. Measurement method for sound velocity of melts in large volume press and its application to liquid sodium up to 2.0 GPa. Rev. Sci. Instrum. 2011, 82, 086108. [Google Scholar] [CrossRef]
- Zhou, W.; Fan, D.; Liu, Y.; Xie, H. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 °C: Comparison with field observations. Geophys. J. Int. 2011, 187, 1393–1404. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Li, H.; Chen, G. The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere. Geophys. J. Int. 2014, 197, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Li, H.; Chen, G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J. Therm. Anal. Calorim. 2014, 115, 1057–1063. [Google Scholar] [CrossRef]
- Miao, S.; Zhou, Y.; Li, H. Thermal diffusivity of lherzolite at high pressures and high temperatures using pulse method. J. Earth Sci. 2019, 30, 218–222. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Asimow, P.; Zhang, X.; Xu, J.; Fan, D.; Zhou, W. Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6–2.6 GPa and 860–970 °C. Am. Miner. 2019, 104, 525–535. [Google Scholar] [CrossRef]
- Pommier, A.; Leinenweber, K.; Kohlstedt, D.L.; Qi, C.; Garnero, E.J.; MacKwell, S.J.; Tyburczy, J.A. Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system. Nature 2015, 522, 202–206. [Google Scholar] [CrossRef]
- Zhang, Z.; Pommier, A. Electrical investigation of metal-olivine systems and application to the deep interior of mercury. J. Geophys. Res. Planets 2017, 122, 2702–2718. [Google Scholar] [CrossRef]
- Mierdel, K.; Keppler, H.; Smyth, J.R.; Langenhorst, F. Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 2007, 315, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Yoshino, T. Electrical conductivity of mantle clinopyroxene as a function of water content and its implication on electrical structure of uppermost mantle. Earth Planet. Sci. Lett. 2016, 447, 1–9. [Google Scholar] [CrossRef]
- Yoshino, T.; Katsura, T. Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet. Sci. Lett. 2012, 337–338, 56–67. [Google Scholar] [CrossRef]
- Yang, X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet. Sci. Lett. 2012, 317, 241–250. [Google Scholar] [CrossRef]
- Poe, B.; Romano, C.; Nestola, F.; Smyth, J. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys. Earth Planet. Inter. 2010, 181, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Karato, S. Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals. Prog. Earth Planet. Sci. 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Du Frane, W.; Tyburczy, J. Deuterium–hydrogen interdiffusion in olivine: Implications for point defects and electrical conductivity. Geochem. Geophys. Geosyst. 2012, 13, Q03004. [Google Scholar] [CrossRef]
- Watson, H.; Roberts, J.; Tyburczy, J. Effect of conductive impurities on electrical conductivity in polycrystalline olivine. Geophys. Res. Lett. 2010, 37, L02302. [Google Scholar] [CrossRef]
- Wang, D.; Karato, S.; Jiang, Z. An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates. Geophys. Res. Lett. 2013, 40, 2028–2032. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Keppler, H.; Rubie, D.C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Miner. Petrol. 1996, 123, 345–357. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Liu, C.; Shan, S.; Cui, T.; Su, G. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities. Acta Geol. Sin. Engl. 2005, 79, 803–809. [Google Scholar] [CrossRef]
- Yang, X.; Keppler, H.; McCammon, C.; Ni, H. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib. Miner. Petrol. 2012, 163, 33–48. [Google Scholar] [CrossRef]
- Schlechter, E.; Stalder, R.; Behrens, H. Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy. Phys. Chem. Miner. 2012, 39, 531–541. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Liu, C.; Su, G.; Cui, T. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure. Acta Petrol. Sin. 2005, 21, 1737–1742. [Google Scholar]
- Yang, X.; Heidelbach, F. Grain size effect on the electrical conductivity of clinopyroxene. Contrib. Miner. Petrol. 2012, 163, 939–947. [Google Scholar] [CrossRef]
- Yang, X.; Keppler, H.; McCammon, C.; Ni, H.; Xia, Q.; Fan, Q. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. Solid Earth 2011, 116, B04208. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Q.; Yang, X. Electrical conductivity of OH-bearing omphacite and garnet in eclogite: The quantitative dependence on water content. Contrib. Miner. Petrol. 2019, 174. [Google Scholar] [CrossRef]
- Yoshino, T.; Nishi, M.; Matsuzaki, T.; Yamazaki, D.; Katsura, T. Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys. Earth Planet. Inter. 2008, 170, 193–200. [Google Scholar] [CrossRef]
- Pearson, D.; Brenker, F.; Nestola, F.; McNeill, J.; Nasdala, L.; Hutchison, M.; Matveev, S.; Silversmit, G.; Schmitz, S.; Vekemans, B. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014, 507, 221–223. [Google Scholar] [CrossRef]
- Karato, S.; Dai, L. Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys. Earth Planet. Inter. 2009, 174, 19–21. [Google Scholar] [CrossRef]
- Yoshino, T.; Shimojuku, A.; Shan, S.; Guo, X.; Yamazaki, D.; Ito, E.; Higo, Y.; Funakoshi, K.I. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J. Geophys. Res. Solid Earth 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Saltas, V.; Fitilis, I.; Vallianatos, F. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading. Tectonophysics 2014, 637. [Google Scholar] [CrossRef]
- Papathanassiou, A.N.; Sakellis, I.; Grammatikakis, J. Negative activation volume for dielectric relaxation in hydrated rocks. Tectonophysics 2010, 490, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Sakellis, I.; Papathanassiou, A.N.; Grammatikakis, J. Measurements of the dielectric properties of limestone under pressure and their importance for seismic electric signals. J. Appl. Geophys. 2014, 102, 77–80. [Google Scholar] [CrossRef]
- Papathanassiou, A.N.; Sakellis, I.; Grammatikakis, J. Dielectric properties of granodiorite partially saturated with water and its correlation to the detection of seismic electric signals. Tectonophysics 2011, 511, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, A.N.; Sakellis, I.; Grammatikakis, J. Dielectric relaxation under pressure in granular dielectrics containing water: Compensation rule for the activation parameters. Solid State Ion. 2012, 209–210, 1–4. [Google Scholar] [CrossRef]
- Karato, S.-I. Theory of isotope diffusion in a material with multiple species and its implications for hydrogen-enhanced electrical conductivity in olivine. Phys. Earth Planet. Inter. 2013, 219, 49–54. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Thermodynamics of Point Defects and Their Relation with the Bulk Properties, 1st ed.; North-Holland: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Saltas, V.; Chroneos, A.; Vallianatos, F. A thermodynamic approach of self- and hetero-diffusion in GaAs: Connecting point defect parameters with bulk properties. RSC Adv. 2016, 6, 53324–53330. [Google Scholar] [CrossRef]
- Saltas, V.; Chroneos, A.; Vallianatos, F. A thermodynamic approach to self-diffusion in silicon: Evidence of a single diffusion mechanism? Mater. Chem. Phys. 2016, 181, 204–208. [Google Scholar] [CrossRef]
- Saltas, V.; Chroneos, A.; Vallianatos, F. Mg diffusion in Si on a thermodynamic basis. J. Mater. Sci. Mater. Electron. 2018, 29, 12022–12027. [Google Scholar] [CrossRef] [Green Version]
- Saltas, V.; Chroneos, A.; Vallianatos, F. Composition and temperature dependence of self-diffusion in Si1−xGex alloys. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B. Diffusion of hydrogen in (Mg,Fe)2SiO4 and high pressure polymorphs refined by the cBΩ model. J. Asian Earth Sci. 2012, 54–55, 9–17. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, X.; Xu, J.; Zhou, R. Application of the cBΩ model for the calculation of oxygen self-diffusion coefficients in minerals. J. Appl. Phys. 2010, 108. [Google Scholar] [CrossRef]
- Zhang, B.; Shan, S.; Wu, X. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties. Phys. Chem. Miner. 2016, 43, 151–159. [Google Scholar] [CrossRef]
Mineral | - | P (GPa) | T (K) | CW (ppm H/Si) | logσο (S/m) | ΔH (kJ/mol) | ΔV (cm3/mol) | Ref. |
---|---|---|---|---|---|---|---|---|
olivine | single crystal a [100] | 4 | 573–1373 | 1380 (SIMS cal.) | 0.74 ± 0.09, 4.52 ± 0.20 | 75 ± 2, 140 ± 6 | - | [35] |
[010] | 0.51 ± 0.04, 1.99 ± 0.16 | 73 ± 3, 101 ± 3 | - | |||||
[001] | 0.30 ± 0.10, 1.08 ± 0.13 | 71 ± 2, 87 ± 5 | - | |||||
hydrous polycrystalline, Re-ReO2 buffer | 4 | 873–1273 | 3675 (3628) b | 1.67 ± 0.08 | 85 ± 5 | - | [33] | |
Ni-NiO buffer | 2853 (2737) | 2.00 ± 0.13 | 88 ± 3 | - | ||||
Mo-MoO2 buffer | 4406 (4394) | 1.69 ± 0.10 | 78 ± 4 | - | ||||
hydrous polycrystalline | 4 | 873–1273 | 2335 (2317) | 2.67 | 88.6 ± 4 | −0.86 ± 0.05 | [34] | |
7 | 2326 (2296) | 2.63 | 86.0 ± 4 | |||||
10 | 2329 (2434) | 2.58 | 83.4 ± 4 | |||||
dry polycrystalline, Mo-MoO2 buffer | 1 | 1073–1423 | not measured | 2.91 ± 0.12 | 143.8 ± 2.7 | 0.25 ± 0.05 | [64] | |
2 | 2.93 ± 0.17 | 145.9 ± 2.0 | ||||||
3 | 2.93 ± 0.10 | 148.2 ± 2.3 | ||||||
4 | 2.96 ± 0.13 | 151.4 ± 3.1 | ||||||
single crystal San Carlos (Fo90), [100] | 8 | 1123–1709 | nominally dry | 2.52 | 140.9 | - | [89] | |
[010] | 1.14 | 108.1 | - | |||||
[001] | 2.00 | 124.5 | - | |||||
polycrystalline Mg1.8Fe0.2SiO4 | 4 | 1273–1573 | not measured | 2.98 ± 0.17 | 166.9 ± 4.8 | 0.68 ± 0.14 | [41] | |
7 | 1273–1673 | 2.63 ± 0.19 | 160.2 ± 4.8 | |||||
10 | 1273–1673 | 2.71 ± 0.18 | 163.1 ± 4.8 | |||||
pyroxenes | polycrystalline orthopyroxene | 5 | 1273–1673 | not measured | 3.72 ± 0.06 | 173.7 ± 1.9 | - | [44] |
polycrystalline clinopyroxene | 13 | 1273–1673 | 3.25 ± 0.07 | 180.4 ± 1.9 | - | |||
polycrystalline ilmenite + garnet | 21 | 1473–1773 | 3.35 ± 0.10 | 160.2 ± 2.9 | - | |||
anhydrous orthopyroxene [001] | 8 | 873–1473 | <8 | 2.73 ± 1.18 | 147 ± 7 | - | [37] | |
hydrous orthopyroxene [001] | 873–1273 | 4660 (4540) | 2.26 ± 1.00 | 80 ± 2 | - | |||
[100] | 873–1273 | 4690 (4600) | 2.21 ± 1.11 | 82 ± 3 | - | |||
[010] | 873–1273 | 4700 (4640) | 2.18 ± 0.95 | 85 ± 2 | - | |||
single crystal, [100] | 10 | 1273–1673 | not measured | 3.02 ± 0.22 | 165.0 ± 5.8 | - | [41] | |
orthopyroxene single crystal | 1 | 1073–1423 | not measured | 3.79 | 166.9 | 0.03 ± 0.01 | [90] | |
2 | 3.80 | 171.8 | ||||||
3 | 3.79 | 174.6 | ||||||
4 | 3.73 | 176.6 | ||||||
garnets | pyrope-rich single crystal, anhydrous | 4–16 | 873–1473 | <10 | 2.93–2.48 | 138–168 | 2.50 ± 0.48 | [38] |
hydrous | 4, 8 | 873–1273 | 7000 | 1950 | 67.7, 65.4 | −0.57 ± 0.05 | ||
anhydrous Py73Alm14Grs13 single crystal | 2 | 873–1273 | <1 | 2.69 | 132.2 | - | [39] | |
hydrous Py73Alm14Grs13 single crystal | 1 | 873–1273 | 465 | 1.735 | 73.3 | −1.4 ± 0.15 | [39] | |
2 | 1.742 | 71.4 | ||||||
3 | 1.759 | 70.4 | ||||||
4 | 1.769 | 68.5 | ||||||
almandine-rich garnet single crystal | 1 | 973–1273 | <3 (6) | 3.11 | 126.4 | 2.01 ± 0.57 | [40] | |
2 | 3.06 | 129.3 | ||||||
3 | 3.04 | 130.3 | ||||||
majorite garnet | 23 | 900–1300 | grainboundarywater | 1.73 | 122.5 | - | [91] | |
1300–1750 | 3.03 | 153.4 | ||||||
1800–2000 | 4.24 | 194.9 | ||||||
wadsleyite | polycrystalline (5–10 μm) | 14–16 | 773–1273 | 102–105 | 2.6 + 0.66logCW | 88 ± 3 | - | [11] |
anhydrous polycrystalline (9 μm) | 15 | 873–1673 | <9 | 2.1 ± 0.1 | 147 ± 3 | - | [3] | |
hydrous polycrystalline (3–7 μm) | 873–1273 | 360–32000 | 2.5 + 0.72logCW | 88 ± 10 | - | |||
polycrystalline (20 μm) | ambient | 1000–1850 | <2 | 2.41 | 138.0 | - | [92] | |
1900–2000 | 3.57 | 180.4 | - | |||||
polycrystalline | 15 | 1073–1473 | not measured | 2.04 ± 0.15 | 91.7 ± 3.9 | - | [41] | |
ringwoodite | polycrystalline (5–10 μm) | 14–16 | 773–1273 | 102–105 | 3.6 + 0.69logCW | 104 ± 2 | - | [11] |
polycrystalline | 20 | 1073–1473 | not measured | 2.92 ± 0.04 | 111.9 ± 1.0 | - | [41] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Hu, H.; Jiang, J.; Sun, W.; Li, H.; Wang, M.; Vallianatos, F.; Saltas, V. An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone. Materials 2020, 13, 408. https://doi.org/10.3390/ma13020408
Dai L, Hu H, Jiang J, Sun W, Li H, Wang M, Vallianatos F, Saltas V. An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone. Materials. 2020; 13(2):408. https://doi.org/10.3390/ma13020408
Chicago/Turabian StyleDai, Lidong, Haiying Hu, Jianjun Jiang, Wenqing Sun, Heping Li, Mengqi Wang, Filippos Vallianatos, and Vassilios Saltas. 2020. "An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone" Materials 13, no. 2: 408. https://doi.org/10.3390/ma13020408
APA StyleDai, L., Hu, H., Jiang, J., Sun, W., Li, H., Wang, M., Vallianatos, F., & Saltas, V. (2020). An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone. Materials, 13(2), 408. https://doi.org/10.3390/ma13020408