Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,590)

Search Parameters:
Keywords = mantle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 47839 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 (registering DOI) - 30 Aug 2025
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
25 pages, 4197 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Viewed by 88
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
Show Figures

Figure 1

30 pages, 3509 KB  
Review
Advances in Distribution Pattern and Enrichment Mechanism of Associated Cobalt Resources in Skarn-Type Deposits, China
by Rongfang Zhang, Chong Cao, Yanbo Zhang, Shuzhi Wang, Yang Zhang, Zhaokang Yuan, Boxiao Dong, Qing Cao, Wenzhe Zuo and Zhihua Guo
Minerals 2025, 15(9), 913; https://doi.org/10.3390/min15090913 - 28 Aug 2025
Viewed by 280
Abstract
Although skarn-type deposits represent significant hosts for Co resources, the distribution patterns and enrichment mechanisms of associated Co resources within these deposits have not been systematically investigated. This study summarizes relevant data on Co resources from representative skarn-type deposits in China to comparatively [...] Read more.
Although skarn-type deposits represent significant hosts for Co resources, the distribution patterns and enrichment mechanisms of associated Co resources within these deposits have not been systematically investigated. This study summarizes relevant data on Co resources from representative skarn-type deposits in China to comparatively reveal the grade and reserve characteristics, spatiotemporal distribution patterns, and coupled enrichment mechanisms of Co across three principal skarn mineralization subtypes: iron-, copper-, and lead–zinc polymetallic-dominated deposits. Studies demonstrate that Fe-dominated skarn-type cobalt deposits exhibit widespread distribution, high Co grades (100–2000 ppm), and abundant Co reserves (4000–32,000 t), demonstrating significantly superior Co resource potential compared to Cu-dominated (Co grades: 20–200 ppm, Co reserves: 3000–10,000 t) and Pb-Zn polymetallic-dominated (Co grades: 140–853 ppm, Co reserves: approximately 3000 t) subtypes. In these skarn-type cobalt deposits, cobalt is mainly hosted in sulfide minerals. Influenced by tectonic settings, magmatic activity, and hydrothermal fluid evolution, associated Co resources in these skarn-type deposits exhibit both regional zonation and stage-specific differential enrichment patterns. In the formation of skarn-type cobalt deposits, mantle-derived magmas play a critical role in the pre-enrichment of Co. The injection of mafic magmas, assimilation of evaporite sequences, and the dissolution–reprecipitation mechanism of hydrothermal fluids collectively promote the re-enrichment of Co during magmatic evolution. These findings provide a theoretical foundation for targeted exploration, sustainable development, and comprehensive utilization of associated Co resources in skarn-type deposits. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

15 pages, 14011 KB  
Article
Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography
by Jianyu Zhao, Shigang Duan and Rong Peng
Appl. Sci. 2025, 15(17), 9420; https://doi.org/10.3390/app15179420 - 27 Aug 2025
Viewed by 261
Abstract
The Jinchuan Cu–Ni sulfide deposit, one of only two ultra-large magmatic Ni–Cu–PGE deposits in Eurasia, is hosted in a small ultramafic intrusion at the southwestern margin of the Alxa block, North China Craton, and contains over five million tonnes of nickel. Previous studies [...] Read more.
The Jinchuan Cu–Ni sulfide deposit, one of only two ultra-large magmatic Ni–Cu–PGE deposits in Eurasia, is hosted in a small ultramafic intrusion at the southwestern margin of the Alxa block, North China Craton, and contains over five million tonnes of nickel. Previous studies suggest that its formation is linked to large-scale deep magmatic processes, but direct evidence from the mantle source region has been limited. Using P-wave seismic tomography, we imaged the crust and mantle beneath the Qilian–Longshoushan area, revealing a deep low-velocity anomaly at ~400 km depth, interpreted as residual mantle plume material. This anomaly spatially corresponds to the Jinchuan deposit, representing a long-term material and heat supply pathway for ore formation. A high-velocity anomaly at ~200 km depth, likely related to Indian plate subduction, influenced the Cenozoic tectonic evolution of the Longshoushan region. These results integrate geophysical, geochemical, and geological evidence, highlighting how deep mantle dynamics and associated magmatic activity controlled the supply of material to the Jinchuan Cu–Ni deposit and contributed to its formation. Full article
Show Figures

Figure 1

13 pages, 5817 KB  
Article
Dissolution of Diamond in Water–Chloride Fluids at Mantle P-T Conditions
by Alexander Khokhryakov, Alexey Kruk, Alexander Sokol and Denis Nechaev
Minerals 2025, 15(9), 897; https://doi.org/10.3390/min15090897 - 24 Aug 2025
Viewed by 320
Abstract
Syngenetic fluid inclusions in natural diamonds are indicators of the composition of fluids responsible for growth and crystallization conditions. The chloride concentration in saline fluid inclusions of natural diamonds reaches 50 wt%. We study the dissolution of diamonds in the H2O-KCl-NaCl [...] Read more.
Syngenetic fluid inclusions in natural diamonds are indicators of the composition of fluids responsible for growth and crystallization conditions. The chloride concentration in saline fluid inclusions of natural diamonds reaches 50 wt%. We study the dissolution of diamonds in the H2O-KCl-NaCl system at temperatures of 1200 °C and 1400 °C and a pressure of 5.5 GPa using a BARS high-pressure multi-anvil apparatus. Two scenarios of diamond dissolution were experimentally investigated: (i) metasomatism by saline brines at high oxygen fugacity of the magnetite–hematite buffer; (ii) interaction with reduced carbon-unsaturated water–chloride fluid at low fO2 imposed by the iron–wüstite buffer. It is found that the presence of alkaline chlorides in the aqueous fluid significantly accelerates diamond dissolution at high oxygen fugacity but inhibits the process under reduced conditions. The morphology of diamond dissolution features is controlled by the presence of water in the fluid over the entire range of the studied P-T-fO2 conditions. Experimental results indicate that the interaction with oxidizing highly saline fluids during metasomatic events could negatively affect diamond preservation in mantle rocks and eventually lead to the formation of uneconomic kimberlites. Under reducing conditions, water–chloride fluids favor diamond preservation. Full article
Show Figures

Figure 1

24 pages, 9686 KB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 - 23 Aug 2025
Viewed by 407
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

23 pages, 12646 KB  
Article
Titanite Textures, U-Pb Dating, Chemistry, and In Situ Nd Isotopes of the Lalingzaohuo Mafic Magmatic Enclaves and Host Granodiorites in the East Kunlun Orogen Belt: Insights into Magma Mixing Processes
by Zisong Zhao, Bingzhang Wang, Shengwei Wu and Jiqing Li
Minerals 2025, 15(9), 886; https://doi.org/10.3390/min15090886 - 22 Aug 2025
Viewed by 374
Abstract
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In [...] Read more.
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In this study, we present new data on the complex zoning patterns, in situ U–Pb ages, trace element compositions, and Nd isotopic characteristics of titanite grains from the MMEs and host granodiorite of Laningzaohuo Zhongyou pluton. Whole-rock geochemical data indicate that the pluton is composed of volcanic arc-related, calc-alkaline, metaluminous I-type granodiorite. Titanite in the MMEs and the granodiorite yield similar U–Pb ages of ~244 Ma but display distinct textural and compositional features. Titanite from the granodiorite is typically euhedral, characterized by magmatic core and mantle with deuteric rim, and exhibits sector and fir-tree zoning in the core. In contrast, titanite from the MMEs is generally anhedral, also showing magmatic core and mantle as well as deuteric rims, but exhibits oscillatory zoning and incomplete sector and fir-tree zoning in the core. Titanite cores in the MMEs have εNd(t) ranging from −2.5 to −3.4, comparable to those of the coeval gabbro and MMEs elsewhere in the EKOB. These cores also show higher LREE/HREE ratios compared to titanite cores in the granodiorite, suggesting crystallization from mixed magmas with greater contributions from enriched lithospheric mantle sources. Titanite mantles in the MMEs yield εNd(t) of −4.0 to −4.8, slightly lower than the cores in the MMEs but higher than those of titanite cores and mantles in the granodiorite (−4.6 to −5.5). The mantle can be interpreted as crystallized from mixed magmas with less mafic components. Titanite rims in the MMEs have εNd(t) of −5.0 to −5.7, identical to those in the granodiorite, and have REE concentrations and Th/U and Nb/Ta ratios consistent with the titanite rims in the granodiorite, clearly indicative of crystallization from evolved, hydrated, granodioritic magmas. Plagioclase in the MMEs exhibits disequilibrium textures such as sieve texture and reverse zoning, with An36–66, contrasting with the more uniform An contents (An35–37) in the granodiorite. This suggests that plagioclase in the MMEs crystallized in an environment influenced by both mafic and felsic magmas. Amphibole thermobarometry indicates that amphibole in the MMEs crystallized at ~788 °C and ~295 MPa, slightly higher than the crystallization conditions in the granodiorite (~778 °C and ~259 MPa). We thus propose that the chemical and textural differences between titanite in the MMEs and granodiorite suggest that the MMEs formed within a mushy hybrid layer generated by injection of upwelling basaltic magma into a pre-existing granitic magma chamber. Titanite cores and mantles in the MMEs likely crystallized from variably mixed magmas. They subsequently underwent resorption and disequilibrium growth within the hybrid layer, and were eventually overgrown by rims formed from evolved interstitial granitic melts within the mushy enclaves. These findings demonstrate that the complex zoning and geochemical titanite in the MMEs provide valuable insights into magma mixing processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 2880 KB  
Article
Temperature-Induced Structural Changes in Muscle Proteins from Giant Squid (Dosidicus gigas) Mantle: FT-IR, Circular Dichroism, and FE-SEM Analysis
by Miguel A. León-Heredia, Enrique Marquez-Rios, Francisco Cadena-Cadena, Hisila Santacruz-Ortega, Ignacio Alfredo Rivero-Espejel, Nathaly Montoya-Camacho and Iván J. Tolano-Villaverde
Foods 2025, 14(17), 2922; https://doi.org/10.3390/foods14172922 - 22 Aug 2025
Viewed by 438
Abstract
The giant squid (Dosidicus gigas) is an abundant marine species with high protein content, making it a promising resource for the food and biomaterial industries. This study aimed to investigate the effect of temperature (25–100 °C) on the structural changes in [...] Read more.
The giant squid (Dosidicus gigas) is an abundant marine species with high protein content, making it a promising resource for the food and biomaterial industries. This study aimed to investigate the effect of temperature (25–100 °C) on the structural changes in sarcoplasmic, myofibrillar, and stromal proteins isolated from squid mantle. Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism (CD) were employed to monitor modifications in secondary structure, while field emission scanning electron microscopy (FE-SEM) was used to examine morphological characteristics. The FT-IR analysis revealed temperature-induced transitions in amide I, II, and A bands, indicating unfolding and aggregation processes, particularly in myofibrillar and stromal proteins. CD results confirmed a loss of α-helix content and an increase in β-sheet structures with rising temperature, especially above 60 °C, suggesting progressive denaturation. FE-SEM micrographs illustrated clear morphological differences: sarcoplasmic proteins displayed smooth, amorphous structures; myofibrillar proteins exhibited fibrous, porous networks; and stromal proteins presented dense and layered morphologies. These findings highlight the different thermal sensitivities and structural behaviors of squid muscle proteins and provide insight into their potential functional applications in thermally processed foods and bio-based materials. Full article
(This article belongs to the Special Issue Food Proteins: Extraction, Functions and Applications)
Show Figures

Figure 1

18 pages, 2600 KB  
Article
Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering
by Toshio Yamaguchi, Sinichi Machida and Takanori Hattori
Molecules 2025, 30(16), 3417; https://doi.org/10.3390/molecules30163417 - 19 Aug 2025
Viewed by 540
Abstract
Scandium(III) (Sc(III)) is the smallest among the trivalent ions in Group 3, which includes yttrium(III) and lanthanides (III) with a hydration number of 8 and 8–9, respectively. The hydration number of Sc(III) in aqueous solutions reported so far varies from six to ten [...] Read more.
Scandium(III) (Sc(III)) is the smallest among the trivalent ions in Group 3, which includes yttrium(III) and lanthanides (III) with a hydration number of 8 and 8–9, respectively. The hydration number of Sc(III) in aqueous solutions reported so far varies from six to ten and remains an open question. In general, applying pressure and temperature to aqueous solutions perturbs the water structure and ion solvation, providing insight into the nature of ion solvation. In the present study, we perform neutron scattering measurements of a 1 m (mol/kg) ScCl3 aqueous solution in D2O (hereafter H is used to symbolize the hydrogen atom instead of D) under the thermodynamic conditions from 0.1 MPa/298 K to 4 GPa/523 K. Using the empirical potential structure refinement (EPSR) method, the neutron scattering data are analyzed to extract the site–site pair distribution functions, coordination number distributions, angle distributions, and spatial density functions (3D structure). A predominant Sc(III) species is [Sc(OH2)7]3+ with a distorted pentagonal bipyramidal geometry together with appreciable amounts of contact ion pair species [ScCln(OH2)(6−n)](3−n)+ (n = 1–3) and [Sc(OH2)8]3+ with mean Sc–Cl and Sc–OH2 distances of 2.42 and 2.11 Å, respectively. An aqua chloride ion is surrounded on average by 7.8 and 10.9 water molecules with a Cl–H2O distance of 3.10 Å at 0.1 MPa/298 K and 4 GPa/523 K, respectively. Applying GPa pressure transforms the tetrahedral network structure of water under ambient conditions to a dense, randomly packed structure with a mean coordination number of 12.6, resulting in an increase in the first-neighbor distance from 2.77 to 2.89 Å. The hydrogen bonds between water molecules remain linear but are largely distorted at high temperatures and high pressures. The present results provide a hint for understanding the underlying mechanism of high-pressure and temperature coordination chemistry and in applied fields, such as processes in geochemistry of the Earth’s upper mantle and pressure-induced protein denaturation. Full article
(This article belongs to the Special Issue Influence of Solvent Molecules in Coordination Chemistry)
Show Figures

Graphical abstract

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 490
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

18 pages, 31746 KB  
Article
Analysis of the Genetic Mechanism of Thermal Anomaly in the A’nan Sag, Erlian Basin Based on 3D Magnetotelluric Imaging
by Sen Wang, Wei Xu, Tianqi Guo, Wentao Duan and Zhaoyun Wang
Appl. Sci. 2025, 15(16), 9085; https://doi.org/10.3390/app15169085 - 18 Aug 2025
Viewed by 311
Abstract
This study focuses on the genesis mechanism of thermal anomalies in the southwestern part of the Anan Depression in the Erlian Basin. Based on magnetotelluric 3D inversion data, a high-resolution electrical resistivity structure model was constructed, revealing the spatial configuration of deep heat [...] Read more.
This study focuses on the genesis mechanism of thermal anomalies in the southwestern part of the Anan Depression in the Erlian Basin. Based on magnetotelluric 3D inversion data, a high-resolution electrical resistivity structure model was constructed, revealing the spatial configuration of deep heat sources and thermal pathways. The main conclusions are as follows: (1) Magnetotelluric 3D imaging reveals an elliptical low-resistivity anomaly (Anomaly C: 20 km × 16 km × 5 km, 0–5 Ωm) at depths of ~10–15 km. This anomaly is interpreted as a hypersaline fluid (approximately 400 °C, ~1.5% volume fraction, 3–5 wt.% NaCl), acting as the primary heat source. (2) Upward migration along F1/F3 fault conduits (10–40 Ωm) establishes a continuous pathway to mid-depth reservoirs D1/D2 (~5 km, 5–10 Ωm) and shallow crust. An overlying high-resistivity caprock (40–100 Ωm) seals thermal energy, forming a convective “source-conduit-reservoir-cap” system. (3) Integrated seismic data reveal that heat from the Abaga volcanic melt supplements Anomaly C via conduction through these conduits, combining with mantle-derived heat to form a composite source. This research delineates the interacting genesis mechanism of “deep low-resistivity heat source—medium-low resistivity fault conduit—shallow low-resistivity reservoir—relatively high-resistivity cap rock” in the southwestern A’nan Sag, providing a scientific basis for optimizing geothermal exploration targets and assessing resource potential. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

23 pages, 12244 KB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 424
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

25 pages, 8632 KB  
Review
Seismo-Stratigraphic Data of the Gulf of Pozzuoli (Southern Tyrrhenian Sea, Italy): A Review and Their Relationships with the New Bradyseismic Crisis
by Gemma Aiello
GeoHazards 2025, 6(3), 46; https://doi.org/10.3390/geohazards6030046 - 15 Aug 2025
Viewed by 431
Abstract
Seismo-stratigraphic data of the Gulf of Pozzuoli have been revised with the aim of identifying the tectonic structures controlling the area in more detail and to highlight the possible relationships of the morpho-structures with the new bradyseismic crisis, still in course. In particular, [...] Read more.
Seismo-stratigraphic data of the Gulf of Pozzuoli have been revised with the aim of identifying the tectonic structures controlling the area in more detail and to highlight the possible relationships of the morpho-structures with the new bradyseismic crisis, still in course. In particular, the relationships between the tectonic structures, consisting of both normal faults and folds, and the possible rising of fluids have been analyzed based on seismic interpretation. We hypothesize that the normal faults occurring in this area have possibly controlled the rising of fluids in these extensional structures. The fluid uprising could possibly be related to the increasing gas activity of the Solfatara–Pisciarelli area onshore during the active bradyseismic crisis (2024–2025). The proposed mechanism is controlled by the occurrence of a heat source, possibly a magmatic reservoir, in the continental crust and/or the mantle, genetically related to the presence of submerged hydrothermal discharges in the coastal areas of the Campania region. To achieve this objective, detailed seismo-stratigraphic sections of the Gulf of Pozzuoli have been constructed, focusing on the areas characterized by tectonic activity. Fluid uprising is mainly controlled by the tectonic setting of the Gulf of Pozzuoli, characterized by anticlines and synclines, representing important structural and stratigraphic traps. Full article
Show Figures

Figure 1

25 pages, 16018 KB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Viewed by 390
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

23 pages, 11454 KB  
Article
Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea
by Song Ouyang, Xiaojia Jiang, Xianquan Lei, Baoquan Wan, Zhenlong Quan and Yizhao Li
Minerals 2025, 15(8), 851; https://doi.org/10.3390/min15080851 - 11 Aug 2025
Viewed by 296
Abstract
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest [...] Read more.
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest gold discovery to date in the area, though its metallogenic age and tectonic evolution remain debated. This study employs in situ micro-analysis techniques to investigate major/trace elements and U-Pb geochronology of hydrothermal monazite coexisting with gold mineralization, providing new constraints on the metallogenic timeline and tectonic setting. Petrographic observations reveal well-crystallized monazite with structural associations to pyrite and native gold, indicating near-contemporaneous formation. Trace element geochemistry shows peak formation temperatures of 270–340 °C for monazite, consistent with fluid inclusion data. Genetic diagrams confirm a hydrothermal origin, enabling metallogenic age determination. Monazite Tera–Wasserburg lower intercept ages and weighted mean 208Pb/233Th ages yield 586 ± 8.7 Ma and 589 ± 2.3 Ma, respectively, overlapping error ranges with published sericite 40Ar/39Ar ages. This confirms Ediacaran gold mineralization, unrelated to the Koka granite (851 ± 2 Ma). Statistical analysis of reliable age data reveals a three-stage tectonic evolution model: (1) 1000–875 Ma, Rodinia supercontinental rifting, with depleted mantle-derived mafic oceanic crust formation and Mozambique Ocean spreading; (2) 875–630 Ma, subduction-driven crustal accretion and Koka granite emplacement; and (3) 630–570 Ma, post-collision crustal/lithospheric remelting, with mixed metamorphic–magmatic fluids and meteoric water input driving gold precipitation. Full article
(This article belongs to the Special Issue Role of Granitic Magmas in Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

Back to TopTop