Diamond-Like-Carbon Coated Dies for Electromagnetic Embossing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Die Manufacturing
2.2. Diamond-Like-Carbon Coating
2.3. Embossing Setup
3. Results
3.1. Embossing Die Material
3.2. Diamond-Like-Carbon Coated Dies
3.3. Embossing Result
4. Conclusions
- Adhesion occurred for all die materials during embossing of aluminum. The highest amount of adhesion was observed under the coil at the edge of the die where the electrical field is assumed highest.
- Diamond-Like-Carbon coating was suitable to prevent the adhesion even during electromagnetic embossing operations of thin sheets when the coating is penetrated by the electromagnetic field.
- No wear of the coating was observed, neither adhesion nor delamination.
- The surface preparation of the sheet with a thickness of s0 = 200 µm led to significant differences in the embossing quality of the mainly laminar orientated “structure A”. On polished sheets, this die produced a better embossing quality, whereas on the surface of a rolled sheet still imprints of the rolling marks were found.
- The sheet with a thickness of s0 = 50 µm exhibited worse embossing results compared to the thicker sheet with the same initial surface condition, due to less energy transfer.
- For “structure B” which is indicated by line the embossing results showed less differences, thus the initial surface and the chosen process parameter were more suitable for this structure.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Psyk, V.; Risch, D.; Kinsey, B.L.; Tekkaya, A.E.; Kleiner, M. Electromagnetic forming—A review. J. Mater. Process. Technol. 2011, 211, 787–829. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, W.; Abu-Siada, A.; Liu, G.; Wang, C.; Wang, Y.; Wang, B.; Li, Y.; Yu, Y. Analysis of electromagnetic force and formability of tube electromagnetic bulging based on convex coil. IEEE Access 2020, 8, 33215–33222. [Google Scholar] [CrossRef]
- Cao, Q.; Li, Z.; Lai, Z.; Li, Z.; Han, X.; Li, L. Analysis of the effect of an electrically conductive die on electromagnetic sheet metal forming process using the finite element-circuit coupled method. Int. J. Adv. Manuf. Technol. 2019, 101, 549–563. [Google Scholar] [CrossRef]
- Gies, S.; Tekkaya, A.E. Design of hybrid conductors for electromagnetic forming coil. In Proceedings of the 8th International Conference on High Speed Forming, ICHSF, Columbus, OH, USA, 14–16 May 2018. [Google Scholar]
- Langstädtler, L.; Pegel, H.; Beckschwarte, B.; Herrmann, M.; Schenck, C.; Kuhfuss, B. Flexible tooling for impulse forming. Procedia Manuf. 2019, 27, 130–137. [Google Scholar] [CrossRef]
- Chu, Y.Y.; Psyk, V.; Tekkaya, A.E. Determination of the flow curve at high strain rates using electromagnetic punch stretching. J. Mater. Process. Technol. 2012, 212, 1314–1323. [Google Scholar] [CrossRef]
- Taebi, F.; Demir, O.K.; Stiemer, M.; Psyk, V.; Kwiatkowski, L.; Brosius, A.; Blum, H.; Tekkaya, A.E. Dynamic forming limits and numerical optimization of combined quasi-static and impulse metal forming. Comp. Mater. Sci. 2012, 54, 293–302. [Google Scholar] [CrossRef]
- Psyk, V.; Kurka, P.; Kimme, S.; Werner, M.; Landgrebe, D.; Ebert, A.; Schwarzendahl, M. Structuring by electromagnetic forming and by forming with an elastomer punch as a tool for component optimisation regarding mechanical stiffness and acoustic performance. Manuf. Rev. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Langstädtler, L.; Kuhfuss, B.; Schenck, C.; Wilhelmi, P. Magnetic pulse cutting of micro metal foils. In Proceedings of the 8th International Conference of Micromanufacturing, ICOMM, Victoria, BC, Canada, 25–28 March 2013. [Google Scholar]
- Weddeling, C.; Woodward, S.T.; Marré, M.; Nellesen, J.; Psyk, V.; Tillmann, W. Influence of groove characteristics on strength of form-fit joints. J. Mater. Process. Technol. 2011, 211, 925–935. [Google Scholar] [CrossRef]
- Kamal, M.; Shang, J.; Cheng, V.; Hatkevich, S.; Daehn, G.S. Agile manufacturing of a micro-embossed case by a two-step electromagnetic forming process. J. Mater. Process. Technol. 2007, 190, 41–50. [Google Scholar] [CrossRef]
- Linnemann, M.; Psyk, V.; Djakow, E.; Springer, R.; Homberg, W.; Landgrebe, D. High-speed incremental forming—New technologies for flexible production of sheet metal parts. Procedia Manuf. 2019, 27, 21–26. [Google Scholar] [CrossRef]
- Lia, J.; Lib, L.; Wanc, M.; Yud, H.; Liu, L. Innovation applications of electromagnetic forming and its fundamental problems. In Proceedings of the 17th International Conference on Metal Forming, Toyohashi, Japan, 16–19 September 2018. [Google Scholar] [CrossRef]
- Kuhfuss, B.; Schattmann, C.; Jahn, M.; Schmidt, A.; Vollertsen, F.; Moumi, E.; Schenck, C.; Herrmann, M.; Ishkina, S.; Rathmann, L.; et al. Micro forming processes. Chapter 2. In Cold Micro Metal Forming; Vollertsen, F., Friedrich, S., Kuhfuß, B., Maaß, P., Thomy, C., Zoch, H.-W., Eds.; Springer: Bremen, Germany, 2020. [Google Scholar] [CrossRef] [Green Version]
- Bach, F.-W.; Bormann, D.; Walden, L. Influence of forming rate on the microstructure and properties of materials subjected to electromagnetic forming—A synopsis. In Proceedings of the 3rd International Conference on High Speed Forming, ICHSF, Dortmund, Germany, 11–12 March 2008; pp. 55–64. [Google Scholar] [CrossRef]
- Li, H.-w.; Yao, X.; Yan, S.-l.; He, J.; Zhan, M.; Huang, L. Analysis of forming defects in electromagnetic incremental forming of a large-size thin-walled ellipsoid surface part of aluminum alloy. J. Mater. Process. Technol. 2018, 255, 703–715. [Google Scholar] [CrossRef]
- Iriondo, E.; Gutiérrez, M.A.; González, B.; Alcaraz, J.L.; Daehn, G.S. Electromagnetic impulse calibration of high strength sheet metal structures. J. Mat. Process. Technol. 2011, 211, 909–915. [Google Scholar] [CrossRef]
- Liu, X.; Huang, L.; Su, H.; Ma, F.; Li, J. Comparative research on the rebound effect in direct electromagnetic forming and indirect electromagnetic forming with an elastic medium. Materials 2018, 11, 1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruzzone, A.A.G.; Costa, H.L.; Lonardo, P.M.; Lucca, D.A. Advances in engineered surfaces for functional performance. CIRP Ann. Manuf. Technol. 2008, 57, 750–769. [Google Scholar] [CrossRef]
- Langstädtler, L.; Schönemann, L.; Schenck, C.; Kuhfuss, B. Electromagnetic embossing of optical microstructures. J. Micro Nano Manuf. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Böhmermann, F.; Riemer, O. Tribological performance of textured micro forming dies. Dry Met. Form. DMFOAJ 2016, 2, 67–71. Available online: http://nbn-resolving.de/urn:nbn:de:gbv:46-00105210-18 (accessed on 30 October 2020).
- Jähnig, T.; Mousavi, A.; Lang, V.; Kunze, T.; Brosius, A.; Lasagni, A. High-speed direct laser interference patterning of sheet metals for friction reduction in deep drawing processes. Dry Met. Form. DMFOAJ 2018, 4, 62–67. Available online: http://nbn-resolving.de/urn:nbn:de:gbv:46-00106553-12 (accessed on 30 October 2020).
- Noh, H.G.; An, W.J.; Song, W.J.; Kang, B.S.; Kim, J. Experimental and numerical study on patterned emboss forming using electromagnetic forces. Int. J. Precis. Eng. Manuf. 2015, 16, 1447–1454. [Google Scholar] [CrossRef]
- Risch, D.; Beerwald, C.; Brosius, A.; Kleiner, M. Aspects of die design for the electromagnetic sheet metal forming process. In Proceedings of the 2nd International Conference on High Speed Forming, ICHSF, Dortmund, Germany, 20–21 March 2006. [Google Scholar] [CrossRef]
- Vogli, E.; Hoffmann, F.; Nebel, J.; Risch, D.; Brosius, A.; Tillmann, W.; Tekkaya, A.E. Novel layers for dies used in electromagnetic sheet metal forming processes. In Proceedings of the 3rd International Conference on High Speed Forming, ICHSF, Dortmund, Germany, 11–12 March 2008. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Riemer, O.; Twardy, S. Tribological behavior of micro structured surfaces for micro forming tools. Int. J. Mach. Tools Manuf. 2009, 50, 425–430. [Google Scholar] [CrossRef]
- Hasselbruch, H.; Herrmann, M.; Mehner, A.; Kuhfuss, B.; Zoch, H.-W. Development, characterization and testing of tungsten doped DLC coatings for dry rotary swaging. In Proceedings of the MATEC Web of Conferences, Glasgow, UK, 6–9 August 2015; Volume 21, p. 8012. [Google Scholar] [CrossRef]
No | Al99.5 Sheet (50 × 50 mm2) | Embossing Die | Embossing Parameters |
---|---|---|---|
1 | s0 = 50 µm | structure A | overall capacity; C = 100 µF |
2 | s0 = 200 µm | voltage; Umax = 6 kV | |
3 | s0 = 200 µm, initial polished | charge energy; Emax = 1800 J | |
4 | s0 = 50 µm | structure B | inductance of the setup, ~0.6 µH |
5 | s0 = 200 µm | coil material, copper | |
6 | s0 = 200 µm, initial polished | coil cross-section, 5 × 5 mm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrmann, M.; Beckschwarte, B.; Hasselbruch, H.; Heidhoff, J.; Schenck, C.; Riemer, O.; Mehner, A.; Kuhfuss, B. Diamond-Like-Carbon Coated Dies for Electromagnetic Embossing. Materials 2020, 13, 4939. https://doi.org/10.3390/ma13214939
Herrmann M, Beckschwarte B, Hasselbruch H, Heidhoff J, Schenck C, Riemer O, Mehner A, Kuhfuss B. Diamond-Like-Carbon Coated Dies for Electromagnetic Embossing. Materials. 2020; 13(21):4939. https://doi.org/10.3390/ma13214939
Chicago/Turabian StyleHerrmann, Marius, Björn Beckschwarte, Henning Hasselbruch, Julian Heidhoff, Christian Schenck, Oltmann Riemer, Andreas Mehner, and Bernd Kuhfuss. 2020. "Diamond-Like-Carbon Coated Dies for Electromagnetic Embossing" Materials 13, no. 21: 4939. https://doi.org/10.3390/ma13214939
APA StyleHerrmann, M., Beckschwarte, B., Hasselbruch, H., Heidhoff, J., Schenck, C., Riemer, O., Mehner, A., & Kuhfuss, B. (2020). Diamond-Like-Carbon Coated Dies for Electromagnetic Embossing. Materials, 13(21), 4939. https://doi.org/10.3390/ma13214939