Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion: Agglomeration/Migration of Nanoparticles
4.1. Influencing Factors
4.2. Underlying Mechanisms: Hypothesis
4.3. Experimental Verification: VSM Tests
5. Conclusions
- The addition of 3 wt.% nano-Fe3O4 particles significantly increases the measured shear stress, yield stress, and plastic viscosity due to the high water demand of the nanoparticles and the increase in inter-particle contacts. Under an external magnetic field of 0.5 T, the measured shear stress of the cementitious paste is lower than that obtained without a magnetic field, resulting in lower yield stress and higher plastic viscosity.
- Obvious nanoparticle agglomeration and bleeding are observed on the interface between the cementitious paste and the upper rotating plate for the cementitious paste with nano-Fe3O4 particles but without a superplasticizer. The high magnetic field strength and high-rate shearing are two main influencing factors contributing to nanoparticle agglomeration.
- High-rate shearing facilitates large magnetic cluster migration from the periphery of the plate to the inner sections due to the combined effect of the magnetic force gradient and shear rate gradient. For the center section of the plate, the coupled effects of magnetic force and high curvature lead to nanoparticles migrating away from this section. This migration behavior only occurs on the upper layer of the cementitious paste in the parallel plate of the rheometer. VSM measurements on the ground samples taken at different sections and layers provide a solid verification of the hypothesis regarding nanoparticle migration under the combined effect of magnetic field and high shearing.
Author Contributions
Funding
Conflicts of Interest
References
- De Schutter, G. Thixotropic Effects during Large-scale Concrete Pump Tests on Site. In Proceedings of the 71st RILEM Annual Week & ICACMS 2017, Chennai, India, 3–8 September 2017. [Google Scholar]
- Roussel, N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem. Concr. Res. 2006, 36, 1797–1806. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos. Part B Eng. 2017, 117, 26–34. [Google Scholar] [CrossRef]
- Marchon, D.; Kawashima, S.; Bessaies-Bey, H.; Mantellato, S.; Ng, S. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cem. Concr. Res. 2018, 112, 96–110. [Google Scholar] [CrossRef]
- Jones, S.; Bentz, D.P.; Martys, N.; George, W.L.; Thomas, A. Rheological Control of 3D Printable Cement Paste and Mortars. In Strain-Hardening Cement-Based Composites; Springer: Berlin, Germany, 2018; Volume 19, pp. 70–80. [Google Scholar]
- De Schutter, G.; Lesage, K.; El Cheikh, K.; De Schryver, R.; Ezzat, M.; Chibulu, C. Casting Concrete Structures in a Smarter Way. In Proceedings of the 14th International Conference on Durability of Building Materials and Components, RILEM Proceedings PRO 107, Ghent, Belgium, 29–31 May 2017. [Google Scholar]
- De Schutter, G.; Lesage, K. Active control of properties of concrete: A (p)review. Mater. Struct. 2018, 51, 123. [Google Scholar] [CrossRef]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Genç, S.; Phulé, P.P. Rheological properties of magnetorheological fluids. Smart Mater. Struct. 2002, 11, 140–146. [Google Scholar] [CrossRef]
- Bica, I.; Liu, Y.D.; Choi, H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013, 19, 394–406. [Google Scholar] [CrossRef]
- Ahamed, R.; Choi, S.-B.; Ferdaus, M. A state of art on magneto-rheological materials and their potential applications. J. Intell. Mater. Syst. Struct. 2018, 29, 2051–2095. [Google Scholar] [CrossRef]
- Nair, S.D.; Ferron, R. Set-on-demand concrete. Cem. Concr. Res. 2014, 57, 13–27. [Google Scholar] [CrossRef]
- Nair, S.D.; Ferron, R. Real time control of fresh cement paste stiffening: Smart cement-based materials via a magnetorheological approach. Rheol. Acta 2016, 55, 571–579. [Google Scholar] [CrossRef]
- Jiao, D.; El Cheikh, K.; Shi, C.; Lesage, K.; De Schutter, G. Structural build-up of cementitious paste with nano-Fe3O4 under time-varying magnetic fields. Cem. Concr. Res. 2019, 124, 105857. [Google Scholar] [CrossRef]
- Jiao, D.; El Cheikh, K.; Lesage, K.; Shi, C.; De Schutter, G. Structural Build-Up of Cementitious Paste Under External Magnetic Fields. Strain-Hardening Cem.-Based Comp. 2019, 36–42. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete-A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Wallevik, O.H.; Wallevik, J.E. Rheology as a tool in concrete science: The use of rheographs and workability boxes. Cem. Concr. Res. 2011, 41, 1279–1288. [Google Scholar] [CrossRef]
- Wallevik, O.H. Rheology—A Scientific Approach to Develop Self-Compacting Concrete. In Proceedings of the 3rd International Symposium on Self-Compacting Concrete, Reykjavik, Iceland, 17–20 August 2003; pp. 23–31. [Google Scholar]
- Roussel, N. Rheology of fresh concrete: From measurements to predictions of casting processes. Mater. Struct. 2007, 40, 1001–1012. [Google Scholar] [CrossRef]
- Roussel, N.; Staquet, S.; Schwarzentruber, L.D.; Le Roy, R.; Toutlemonde, F. SCC casting prediction for the realization of prototype VHPC-precambered composite beams. Mater. Struct. 2007, 40, 877–887. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, Z.; Zhou, D.; Huang, T.; Huang, H.; Jiao, D.; Shi, C. A feasible method for measuring the buildability of fresh 3D printing mortar. Constr. Build. Mater. 2019, 227, 116600. [Google Scholar] [CrossRef]
- Moeini, M.A.; Hosseinpoor, M.; Yahia, A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Constr. Build. Mater. 2020, 257, 119551. [Google Scholar] [CrossRef]
- Park, J.H.; Chin, B.D.; Park, O.O. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion. J. Colloid Interface Sci. 2001, 240, 349–354. [Google Scholar] [CrossRef]
- Fang, F.F.; Kim, J.H.; Choi, H.J. Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymers 2009, 50, 2290–2293. [Google Scholar] [CrossRef]
- Chin, B.D.; Park, J.H.; Kwon, M.H.; Park, O.O. Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol. Acta 2001, 40, 211–219. [Google Scholar] [CrossRef]
- Laun, H.M.; Gabriel, C.; Kieburg, C. Twin gap magnetorheometer using ferromagnetic steel plates—Performance and validation. J. Rheol. 2010, 54, 327–354. [Google Scholar] [CrossRef]
- Rankin, P.J.; Horvath, A.T.; Klingenberg, D.J. Magnetorheology in viscoplastic media. Rheol. Acta 1999, 38, 471–477. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kwon, S.H.; Choi, H.J. Magnetorheological characteristics of carbonyl iron microparticles with different shapes. Korea-Aust. Rheol. J. 2019, 31, 41–47. [Google Scholar] [CrossRef]
- Beruto, D.T.; Lagazzo, A.; Frumento, D.; Converti, A. Kinetic model of Chlorella vulgaris growth with and without extremely low frequency-electromagnetic fields (EM-ELF). J. Biotechnol. 2014, 169, 9–14. [Google Scholar] [CrossRef]
- Beruto, D.T.; Botter, R.; Converti, A. Aluminum hydroxide microstructural units in gelled media aged, or nonaged, with alcohol and water. J. Colloid Interface Sci. 2008, 322, 158–167. [Google Scholar] [CrossRef]
- Leighton, D.; Acrivos, A. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 1987, 181, 415. [Google Scholar] [CrossRef]
- Krishnan, G.P.; Beimfohr, S.; Leighton, D.T. Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 1996, 321, 371. [Google Scholar] [CrossRef]
- Chapman, B.K. Shear-Induced Migration Phenomena in Concentrated Suspensions. Doctoral Dissertation, University of Notre Dame, Notre Dame, IN, USA, 1991; p. 5457. [Google Scholar]
- Chow, A.W.; Sinton, S.W.; Iwamiya, J.H.; Stephens, T.S. Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 1994, 6, 2561–2576. [Google Scholar] [CrossRef]
- Jiao, D.; Lesage, K.; Yardimci, M.Y.; El Cheikh, K.; Shi, C.; De Schutter, G. Quantitative assessment of the influence of external magnetic field on clustering of nano-Fe3O4 particles in cementitious paste. Cem. Concr. Res. 2020. under review. [Google Scholar]
- Presuel-Moreno, F.; Sagues, A. Bulk magnetic susceptibility measurements for determination of fly ash presence in concrete. Cem. Concr. Res. 2009, 39, 95–101. [Google Scholar] [CrossRef]
Components | % By Mass |
---|---|
SiO2 | 19.6 |
Al2O3 | 4.88 |
Fe2O3 | 3.14 |
CaO | 63.2 |
MgO | 1.8 |
SO3 | 2.9 |
K2O | 0.56 |
TiO2 | 0.25 |
ZnO | 0.1 |
Others | 3.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, D.; Lesage, K.; Yardimci, M.Y.; El Cheikh, K.; Shi, C.; De Schutter, G. Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration. Materials 2020, 13, 5164. https://doi.org/10.3390/ma13225164
Jiao D, Lesage K, Yardimci MY, El Cheikh K, Shi C, De Schutter G. Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration. Materials. 2020; 13(22):5164. https://doi.org/10.3390/ma13225164
Chicago/Turabian StyleJiao, Dengwu, Karel Lesage, Mert Yucel Yardimci, Khadija El Cheikh, Caijun Shi, and Geert De Schutter. 2020. "Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration" Materials 13, no. 22: 5164. https://doi.org/10.3390/ma13225164
APA StyleJiao, D., Lesage, K., Yardimci, M. Y., El Cheikh, K., Shi, C., & De Schutter, G. (2020). Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration. Materials, 13(22), 5164. https://doi.org/10.3390/ma13225164