Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials
Abstract
:1. Introduction
2. Experimental
2.1. Ratio of Tested Materials
2.2. Experimental Scheme and Process
3. Analysis of Test Results
4. Influence Mechanism Analysis
4.1. Chemical Mechanism
4.1.1. Hydration Reaction Mechanism
4.1.2. Hydration Reaction Analysis
4.2. Physical Characteristics
4.2.1. Structural Feature Analysis
4.2.2. Pore Characteristics Analysis
5. Numerical Analysis
5.1. Model Definition
5.2. Random Distribution of Pores
5.3. Numerical Simulation Results and Analysis
5.3.1. Analysis of the Deformation Pattern of the Specimen
5.3.2. Analysis of the Force of the Specimen
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, D.S.; Fan, G.W.; Wang, X.F. Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies. Int. J. Min. Sci. Technol. 2012, 22, 47–50. [Google Scholar] [CrossRef]
- Xia, Y.C.; Zhi, J.F.; Sun, X.Y. Study on relation between tectonic stress and coalmining subsidence with similar material simulation. J. Coal Sci. Eng. 2005, 11, 37–40. [Google Scholar]
- Tao, M.; Chen, X.; Ding, Q.Q. A method for subsidence monitoring of similar material simulation test in coal mining. Adv. Mater. Res. 2013, 765, 2172–2175. [Google Scholar] [CrossRef]
- Yan, S.Y.; Yang, K.; Liao, B.C. Experimental study of high mining-induced stress evolution characteristics of downward relieving mining in Paner coal mine. Rock Soil Mech. 2013, 34, 2551–2556. [Google Scholar]
- Zhang, H.W.; Han, J.; Hai, L.X.; Li, M.; Qiao, H.B. Study on closed multiple-seam in the ascending mining technology. J. Min. Saf. Eng. 2013, 30, 63–67. [Google Scholar]
- Wang, F.T.; Zhang, C.; Zhang, X.G.; Song, Q. Overlying strata movement rules and safety mining technology for the shallow depth seam proximity beneath a room mining goaf. Int. J. Min. Sci. Technol. 2015, 25, 139–143. [Google Scholar] [CrossRef]
- Wen, B.A.; Yan, Y.; Dong, Y.X. The application of similar material in the simulation of overlying strata movement in high inclined seam in Dongbaowei mine. Adv. Mater. Res. 2012, 600, 194–198. [Google Scholar] [CrossRef]
- Xing, P.W.; Song, X.M.; Fu, Y.P. Study on similar simulation of the roof strata movement laws of the large mining height workface in shallow coal seam. Adv. Mater. Res. 2012, 450, 1318–1322. [Google Scholar] [CrossRef]
- Cai, F.; Liu, Z.G. Research on Similar materials simulation test for protective coal-seams of group B coal-seams of Panyi coal mine of China. Appl. Mech. Mater. 2012, 204, 1389–1394. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, S.; Wen, G.; Dai, L.; Wang, B. Coal-like material for coal and gas outburst simulation tests. Int. J. Rock Mech. Min. Sci. 2015, 74, 151–156. [Google Scholar] [CrossRef]
- Li, J.G.; Wu, Y.; Wang, Y.Y.; Qin, N.; Wang, W.X. Experimental study on self-made similar material of soft rock. Key Eng. Mater. 2016, 717, 140–146. [Google Scholar] [CrossRef]
- Yang, R.S.; Zhang, Y.F.; Yang, L.Y.; Wu, Y.L.; Ma, J.H. Study on the mixing proportion test of similar material gypsum. China Min. Mag. 2013, 22, 125–130. [Google Scholar]
- Zhang, Q.Y.; Li, S.C.; Guo, X.H.; Li, Y.; Wang, H.P. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application. Rock Soil Mech. 2008, 29, 2126–2130. [Google Scholar]
- Chen, L.W.; Bai, S.W. Proportioning test study on similar material of rockburst tendency of brittle rockmass. Rock Soil Mech. 2006, 27, 1050–1054. [Google Scholar]
- Zhao, P.X.; Li, S.G.; Zhuo, R.S.; Lin, H.F. Experimental research on the properties of “solid–gas” coupling physical simulation similar materials and testing by computer of gas in coal rock. Wirel. Pers. Commun. 2018, 102, 1539–1556. [Google Scholar] [CrossRef]
- Cheng, W.M.; Sun, L.; Wang, G.; Du, W.; Qu, H. Experimental research on coal seam similar material proportion and its application. Int. J. Min. Sci. Technol. 2016, 26, 913–918. [Google Scholar] [CrossRef]
- Luo, F.; Yang, B.S.; Hao, B.B.; Sun, L.H.; Fu, M.M. Mechanical properties of similar material under uniaxial compression and the strength error sources. J. Min. Saf. Eng. 2013, 30, 93–99. [Google Scholar]
- Sari, D.; Pasamehmetoglu, A.G. The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cem. Concr. Res. 2005, 35, 936–942. [Google Scholar] [CrossRef]
- Bosiljkov, V.B. SCC mixes with poorly graded aggregate and high volume of limestone filler. Cem. Concr. Res. 2003, 33, 1279–1286. [Google Scholar] [CrossRef]
- Ke, X.; Hou, H.; Zhou, M.; Wang, Y.; Zhou, X. Effect of particle gradation on properties of fresh and hardened cemented paste backfill. Constr. Build. Mater. 2015, 96, 378–382. [Google Scholar] [CrossRef]
- Jin, Y.; Han, L.; Meng, Q.; Ma, D.; Han, G.; Gao, F.; Wang, S. Experimental investigation of the mechanical behaviors of grouted sand with UF-OA grouts. Processes 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.X.; Li, T.B.; Cao, H.Y.; Pei, M.S. Influence of the sand particle size on the compressive strength in the analog model study. Soil Eng. Found. 2016, 30, 83–86. [Google Scholar]
- Lin, H.F.; Zhai, Y.L.; Li, S.G.; Zhao, P.X.; Li, L. Experimental study on influential factors of physical and mechanics parameters of similar material for new type rock. J. Xi’an Univ. Sci. Technol. 2015, 35, 409–414. [Google Scholar]
- Wu, J.Y.; Feng, M.M.; Xu, J.M.; Qiu, P.; Wang, Y.; Han, G.S. Particle size distribution of cemented rockfill effects on strata stability in filling mining. Minerals 2018, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Feng, M.M.; Mao, X.B.; Xu, J.M.; Zhang, W.L.; Ni, X.Y.; Han, G.S. Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling. Constr. Build. Mater. 2018, 193, 295–311. [Google Scholar] [CrossRef]
- Börgesson, L.; Johannesson, L.E.; Gunnarsson, D. Influence of soil structure heterogeneities on the behaviour of backfill materials based on mixtures of bentonite and crushed rock. Appl. Clay Sci. 2003, 23, 121–131. [Google Scholar] [CrossRef]
- Li, H.Z.; Guo, G.L.; Zha, J.F. Study on time-varying Characteristics of similar material model strength and the regulation measures. Environ. Earth Sci. 2017, 76, 518. [Google Scholar] [CrossRef]
- Rao, Y.C.; Li, G.H. Laboratory determination the tensile strength of modified desulfurization gypsum. Sichuan Build. Mater. 2014, 40, 35–36. [Google Scholar]
- Fall, M.; Benzaazoua, M.; Saa, E.G. Mix proportioning of underground cemented tailings backfill. Tunn. Undergr. Space Technol. 2008, 23, 80–90. [Google Scholar] [CrossRef]
- Fall, M.; Célestin, J.C.; Pokharel, M.; Touré, M. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Eng. Geol. 2010, 114, 397–413. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill. Eng. Geol. 2014, 168, 23–37. [Google Scholar] [CrossRef]
- Garcia, C.; Trendafilova, I.; Zucchelli, A. The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites. J. Compos. Sci. 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Trendafilova, I.; Zucchelli, A.; Contreras, J. The effect of nylon nanofibers on the dynamic behaviour and the delamination resistance of GFRP composites. MATEC Web Conf. 2018, 148. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Feng, M.M.; Ni, X.Y.; Mao, X.B.; Chen, Z.Q.; Han, G.S. Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill. Ultrasonics 2019, 92, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Gautam, B.P.; Panesar, D.K.; Sheikh, S.A.; Vecchio, F.J. Effect of coarse aggregate grading on the ASR expansion and damage of concrete. Cem. Concr. Res. 2017, 95, 75–83. [Google Scholar] [CrossRef]
Lithology | Density g/cm3 | Compressive Strength /MPa | Hemihydrate Plaster/Mesh | Heavy Calcium Powder/Mesh | Washed Sand/Mesh |
Mudstone | 1.7 | 34.6 | 300–400 | 300–400 | 80–100 |
Model Density g/cm3 | Model Compressive Strength /kPa | Water | Hemihydrate Plaster Ratio/% | Heavy Calcium Powder Ratio/% | Washed Sand Ratio/% |
1.13 | 100.2 | 1/9 | 21 | 9 | 70 |
- | 0.1 mm | 0.3 mm | 0.5 mm | 0.7 mm | 0.9 mm | 1.0 mm | 1.2 mm | 1.5 mm | 2.0 mm | 2.5 mm | 3.0 mm |
---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 66.89 | 55.87 | 44.17 | 40.17 | 35.01 | 34.06 | 33.07 | 31.16 | 26.30 | 26.22 | 22.04 |
7 d | 104.59 | 102.66 | 100.15 | 100.04 | 99.58 | 99.39 | 97.30 | 88.94 | 85.70 | 74.87 | 61.57 |
10 d | 150.01 | 133.29 | 124.93 | 121.89 | 119.91 | 117.52 | 116.19 | 114.97 | 102.62 | 93.00 | 83.62 |
Sand Particle Sizes/mm | h1/cm | h2/cm | H/cm | hi/cm | t/s | Q/mL | s/cm2 | j/1 | k/×10−4 cm/s | Permeability Coefficient Average/ ×10−4cm/s |
---|---|---|---|---|---|---|---|---|---|---|
2.5 | 136.6 | 100 | 80 | 4 | 3.9 | 12.0 | 30 | 495.750 | 2.050 | 1.770 |
137.3 | 100 | 80 | 4 | 4.4 | 11.4 | 30 | 496.625 | 1.750 | ||
141.5 | 100 | 80 | 4 | 5.7 | 13.0 | 30 | 501.875 | 1.520 | ||
2.0 | 139.3 | 100 | 80 | 4 | 5.3 | 13.0 | 30 | 499.125 | 1.640 | 1.670 |
139.4 | 100 | 80 | 4 | 5.8 | 14.5 | 30 | 499.250 | 1.680 | ||
139.7 | 100 | 80 | 4 | 5.9 | 15.0 | 30 | 499.625 | 1.690 | ||
1.5 | 139.9 | 100 | 80 | 4 | 6.6 | 14.0 | 30 | 499.875 | 1.420 | 1.410 |
140.9 | 100 | 80 | 4 | 6.8 | 15.0 | 30 | 501.125 | 1.470 | ||
141.7 | 100 | 80 | 4 | 7.0 | 14.0 | 30 | 502.125 | 1.340 | ||
1.0 | 143.3 | 100 | 80 | 4 | 7.1 | 14.0 | 30 | 504.125 | 1.300 | 1.310 |
143.2 | 100 | 80 | 4 | 7.0 | 14.0 | 30 | 504.000 | 1.330 | ||
143.5 | 100 | 80 | 4 | 7.1 | 14.0 | 30 | 504.375 | 1.310 | ||
0.5 | 147.3 | 100 | 80 | 4 | 10.0 | 14.0 | 30 | 509.125 | 0.917 | 0.919 |
140.6 | 100 | 80 | 4 | 8.5 | 12.0 | 30 | 500.750 | 0.945 | ||
142.1 | 100 | 80 | 4 | 11.0 | 14.5 | 30 | 502.625 | 0.894 | ||
0.1 | 154.6 | 110 | 80 | 4 | 23.0 | 14.5 | 30 | 530.750 | 0.400 | 0.415 |
152.1 | 110 | 80 | 4 | 21.0 | 14.0 | 30 | 527.625 | 0.429 | ||
152.1 | 110 | 80 | 4 | 21.0 | 14.0 | 30 | 527.625 | 0.417 |
- | Maximum Horizontal Positive Displacement | Maximum Horizontal Negative Displacement | Maximum Difference of Horizontal Displacements | |||
---|---|---|---|---|---|---|
- | Large | Small | Large | Small | Large | Small |
1 | 16.34 | 9.32 | −3.73 | −6.55 | 20.07 | 16.00 |
2 | 15.97 | 10.74 | −8.61 | −2.58 | 24.58 | 13.32 |
3 | 12.83 | 11.70 | −8.12 | −3.29 | 20.95 | 10.00 |
Average | 15.05 | 10.59 | −6.82 | −4.14 | 21.87 | 13.11 |
Group # | 1 | 2 | 3 | Average |
---|---|---|---|---|
Specimens with large sand particles | 2.14 | 1.71 | 2.51 | 2.12 |
Specimens with small sand particles | 1.68 | 1.53 | 1.76 | 1.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, W.; Qi, Q.; Zhang, Z.; Nan, S. Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials. Materials 2020, 13, 765. https://doi.org/10.3390/ma13030765
Guan W, Qi Q, Zhang Z, Nan S. Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials. Materials. 2020; 13(3):765. https://doi.org/10.3390/ma13030765
Chicago/Turabian StyleGuan, Weiming, Qi Qi, Zhiyi Zhang, and Senlin Nan. 2020. "Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials" Materials 13, no. 3: 765. https://doi.org/10.3390/ma13030765
APA StyleGuan, W., Qi, Q., Zhang, Z., & Nan, S. (2020). Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials. Materials, 13(3), 765. https://doi.org/10.3390/ma13030765