Thermal History Dependent Al Distribution in Aluminum Substituted Strontium Hexaferrite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Composition
3.2. Magnetism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Bragg, W.H. The Structure of Magnetite and the Spinels. Nature 1915, 95, 561. [Google Scholar] [CrossRef]
- Bragg, W.H. XXX. The Structure of the Spinel Group of Crystals. Philos. Mag. 1915, 30, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Obradors, X.; Collomb, A.; Pernet, M. X-Ray Analysis of the Structural and Dynamic Properties of BaFe12O19 Hexagonal Ferrite at Room Temperature. J. Solid State Chem. 1985, 56, 171–181. [Google Scholar] [CrossRef]
- Morisako, A.; Matsumoto, M.; Naoe, M. Ba-ferrite thin film rigid disk for high density perpendicular magnetic recording. IEEE Trans. Magn. 1986, 22, 1146–1148. [Google Scholar] [CrossRef]
- Ferrites - Physical Properties of Ferrimagnetic Oxides in Relation to their Technical Applications; Smit, J.; Wijn, H.P.J. (Eds.) Philips’ Technical Library: Eindhoven, The Netherlands, 1959. [Google Scholar]
- Primc, D.; Makovec, D.; Lisjak, D.; Drofenik, M. Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions. Nanotechnology 2009, 20, 315605–315613. [Google Scholar] [CrossRef]
- Drofenik, M.; Kristl, M.; Žnidaršič, A.; Hanžel, D.; Lisjak, D. Hydrothermal Synthesis of Ba-Hexaferrite Nanoparticles. J. Am. Ceram. Soc. 2007, 90, 2057–2061. [Google Scholar] [CrossRef]
- Sui, X.; Scherge, M.; Kryder, M.H.; Snyder, J.E.; Harris, V.G.; Koon, N.C. Barium ferrite thin-film recording media. J. Magn. Magn. Mater. 1996, 155, 132–139. [Google Scholar] [CrossRef]
- Barb, D.; Diamandescu, L.; Rusi, A.; Tӑrӑbӑsanu-Mihӑilӑ, D.; Morariu, M.; Teodorescu, V. Preparation of barium hexaferrite by a hydrothermal method: Structure and magnetic properties. J. Mater. Sci. 1986, 21, 1118–1122. [Google Scholar] [CrossRef]
- Mali, A.; Ataie, A. Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scr. Mater. 2005, 53, 1065–1070. [Google Scholar] [CrossRef]
- Sürig, C.; Hempel, K.A.; Bonnenberg, D. Hexaferrite particles prepared by sol-gel technique. IEEE Trans. Magn. 1994, 30, 4092–4094. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Tarasova, A.Y.; Zherebtsov, D.A.; Gudkova, S.A.; Galimov, D.M.; Zhivulin, V.E.; Trofimov, E.A.; Nemrava, S.; Perov, N.S.; Isaenko, L.I.; et al. Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Techniques. Materials 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Obradors, X.; Solans, X.; Collomb, A.; Samaras, D.; Rodriguez, J.; Pernet, M.; Font-Altaba, M. Crystal Structure of Strontium Hexaferrite SrFe12O19. J. Solid State Chem. 1988, 72, 218–224. [Google Scholar] [CrossRef]
- Blix, R. On the chemical composition of the magnetoplumbite: (With a new analysis.). Geol. Foeren. Stockholm Foerh. 1937, 59, 300–302. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Bischoff, M.; Perov, N.S.; Semisalova, A.S.; Krivtsov, I.V.; Isaenko, L.I.; Mikhailov, G.G.; et al. Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals. J. Alloys Compd. 2014, 615, 1043–1046. [Google Scholar] [CrossRef]
- Shlyk, L.; Vinnik, D.A.; Zherebtsov, D.A.; Hu, Z.; Kuo, C.-Y.; Chang, C.-F.; Lin, H.-J.; Yang, L.-Y.; Semisalova, A.S.; Perov, N.S.; et al. Single crystal growth, structural characteristics and magnetic properties of chromium substituted M-type ferrites. Solid State Sci. 2015, 50, 23–31. [Google Scholar] [CrossRef]
- Wang, C.-A.; Lu, H.; Huang, Z.; Xie, H. Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating. J. Am. Ceram. Soc. 2018, 101, 1095–1104. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Yakushechkina, A.K.; Semisalova, A.S.; Gudkova, S.A.; Anikeev, A.N.; Perov, N.S.; Isaenko, L.I.; et al. Tungsten substituted BaFe12O19 single crystal growth and characterization. Mater. Chem. Phys. 2015, 155, 99–103. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Perov, N.S.; Semisalova, A.S.; Krivtsov, I.V.; Isaenko, L.I.; Mikhailov, G.G.; Niewa, R. Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization. Cryst. Growth Des. 2014, 14, 5834–5839. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Tarasova, A.Y.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Gudkova, S.A.; Nemrava, S.; Yakushechkina, A.K.; Semisalova, A.S.; Isaenko, L.I.; Niewa, R. Cu-substituted barium hexaferrite crystal growth and characterization. Ceram. Int. 2015, 41, 9172–9176. [Google Scholar] [CrossRef]
- Nemrava, S.; Vinnik, D.A.; Hu, Z.; Valldor, M.; Kuo, C.-Y.; Zherebtsov, D.A.; Gudkova, S.A.; Chen, C.-T.; Tjeng, L.H.; Niewa, R. Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19. Inorg. Chem. 2017, 56, 3861–3866. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.W.; Jeon, K.W.; Kim, J. Synthesis and Magnetic Properties of BaFe12-xAlxO19 Nanopowders. IEEE Trans. Magn. 2009, 45, 4405–4408. [Google Scholar] [CrossRef]
- Gambino, R.J.; Leonhard, F. Growth of Barium Ferrite Single Crystals. J. Am. Ceram. Soc. 1961, 44, 221–224. [Google Scholar] [CrossRef]
- Albanese, G. Mössbauer investigation of aluminium substituted barium hexaferrite in the paramagnetic state. J. Magn. Magn. Mater. 1995, 147, 421–426. [Google Scholar] [CrossRef]
- Choi, D.H.; An, S.Y.; Lee, S.W.; Shim, I.-B.; Kim, C.S. Site occupancy and anisotropy distribution of Al substituted Ba-ferrite with high coercivity. Phys. Stat. Solidi B 2004, 241, 1736–1739. [Google Scholar] [CrossRef]
- Albanese, G.; Carbucicchio, M.; Deriu, A. Substitution of Fe3+ by Al3+ in the Trigonal Sites of M-Type Hexagonal Ferrites. Nuovo Cimento 1973, 15B, 147–158. [Google Scholar] [CrossRef]
- Awawdeh, M.; Bsoul, I.; Mahmood, S.H. Magnetic properties and Mössbauer spectroscopy on Ga, Al and Cr substituted hexaferrites. J. Alloys Compd. 2014, 585, 465–473. [Google Scholar] [CrossRef]
- Pauling, L.; Hendricks, S.B. The crystal structures of hematite and corundum. J. Am. Chem. Soc. 1925, 47, 781–790. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Meaz, T.M.; Amer, M.A.; El Shersaby, H.A. Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Physica B 2013, 426, 137–143. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Ashiq, M.N.; Hernandez-Gomez, P.; Munoz, J.M. Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater. 2008, 320, 881–886. [Google Scholar] [CrossRef]
Crystal | 1 | 2 | 3 |
---|---|---|---|
Refined composition | SrFe11.2(1)Al0.8(1)O19 | SrFe11.2(2)Al0.8(2)O19 | SrFe11.0(1)Al1.0(1)O19 |
Crystal system | Hexagonal | ||
Space group type | P63/mmc (No. 194) | ||
a/pm | 588.37(1) | 587.39(1) | 587.41(1) |
c/pm | 2304.34(7) | 2300.42(6) | 2300.62(6) |
Z | 2 | 2 | 2 |
Density ρ (calculated)/ g/cm³ | 4.966 | 4.991 | 4.990 |
Volume V/108·pm³ | 6.9084(3) | 6.8737(2) | 6.8748(2) |
Diffractometer | κ-CCD (Bruker-Nonius) | ||
Wavelength | Mo-Kα, λ = 71.073 pm | ||
Index ranges hkl | h = ±8; k = ±9; l = ±36 | –8 ≤ h ≤ 7; k = ±9; –21 ≤ l ≤ 36 | h = ±9; k = ±9; –34 ≤ l ≤ 36 |
Measurement range θmax/° | 69.88 | 69.87 | 69.87 |
F(000) | 978.0 | 978.0 | 978.0 |
µ(Mo Kα)/mm–1 | 15.18 | 15.26 | 15.25 |
Reflections collected/independent | 15718/645 | 14639/645 | 16598/645 |
Rint/Rσ | 0.0445/0.0151 | 0.0620/0.0193 | 0.0733/0.0225 |
R1/R1 with F0 ≥ 4σ(F0) | 0.0297/0.0245 | 0.0371/0.0310 | 0.0443/0.0324 |
wR2/GooF | 0.0576/1.090 | 0.0785/1.155 | 0.0872/1.125 |
Largest e− difference peak/hole | 0.89/–0.82 | 0.85/–1.49 | 1.27/–1.53 |
Atom | Site | x/a | y/b | z/c | Occupation | Uiso/pm2 |
---|---|---|---|---|---|---|
Sr | 2d | 2/3 | 1/3 | 1/4 | 1 | 0.0144(2) |
M(1) | 2a | 0 | 0 | 0 | 88/12(1) | 0.0070(3) |
M(2) | 2b | 0 | 0 | 1/4 | 92/8(2) | 0.0138(3) |
M(3) | 4f | 1/3 | 2/3 | 0.02729(3) | 96/4(1) | 0.0065(2) |
M(4) | 4f | 1/3 | 2/3 | 0.19075(3) | 93/7(1) | 0.0070(2) |
M(5) | 12k | 0.33750(8) | x/2 | 0.10914(2) | 93/6(1) | 0.0071(2) |
O(1) | 4e | 0 | 0 | 0.1511(2) | 1 | 0.0087(6) |
O(2) | 4f | 2/3 | 1/3 | 0.0553(2) | 1 | 0.0099(6) |
O(3) | 6h | 0.1816(3) | 2x | 1/4 | 1 | 0.0119(6) |
O(4) | 12k | 0.15616 | 2x | 0.05231(8) | 1 | 0.0085(4) |
O(5) | 12k | 0.546(2) | 0.15080(8) | 1 | 0.0097(4) |
Atom | Site | x/a | y/b | z/c | Occupation | Uiso/pm2 |
---|---|---|---|---|---|---|
Sr | 2d | 2/3 | 1/3 | 1/4 | 1 | 0.0152(3) |
M(1) | 2a | 0 | 0 | 0 | 78/22(2) | 0.0070(4) |
M(2) | 2b | 0 | 0 | 1/4 | 93/7(2) | 0.0151(4) |
Fe(3) | 4f | 1/3 | 2/3 | 0.02729(3) | 1 | 0.0071(3) |
M(4) | 4f | 1/3 | 2/3 | 0.19056(4) | 95/5(2) | 0.0076(3) |
M(5) | 12k | 0.33725(9) | x/2 | 0.10901(2) | 94/6(1) | 0.0077(2) |
O(1) | 4e | 0 | 0 | 0.1507(2) | 1 | 0.0082(7) |
O(2) | 4f | 2/3 | 1/3 | 0.0558(2) | 1 | 0.0092(8) |
O(3) | 6h | 0.1816(4) | 2x | 1/4 | 1 | 0.0128(7) |
O(4) | 12k | 0.1558(3) | 2x | 0.0521(1) | 1 | 0.0084(5) |
O(5) | 12k | 0.5043(3) | 0.1502(1) | 1 | 0.0091(4) |
Atom | Site | x/a | y/b | z/c | Occupation | Uiso/pm2 |
---|---|---|---|---|---|---|
Sr | 2d | 2/3 | 1/3 | 1/4 | 1 | 0.0167(3) |
M(1) | 2a | 0 | 0 | 0 | 76/24(2) | 0.0077(4) |
M(2) | 2b | 0 | 0 | 1/4 | 92/8(2) | 0.0159(5) |
M(3) | 4f | 1/3 | 2/3 | 0.02731(4) | 98/2(1) | 0.0079(3) |
M(4) | 4f | 1/3 | 2/3 | 0.19058(4) | 94/6(1) | 0.0083(3) |
M(5) | 12k | 0.33715(9) | x/2 | 0.10902(2) | 92/8(1) | 0.0083(2) |
O(1) | 4e | 0 | 0 | 0.1508(2) | 1 | 0.0095(8) |
O(2) | 4f | 2/3 | 1/3 | 0.0555(2) | 1 | 0.0097(9) |
O(3) | 6h | 0.1817(4) | 2x | 1/4 | 1 | 0.0129(8) |
O(4) | 12k | 0.1553(3) | 2x | 0.0521(2) | 1 | 0.0099(5) |
O(5) | 12k | 0.5040(3) | 0.1502(2) | 1 | 0.0105(5) |
Sample | Average Aluminum Content/at.-% |
---|---|
Crystal 1 from initial synthesis | 1.7 ± 0.2 |
Crystal 2 from annealing in platinum crucible | 2.0 ± 0.5 |
Crystal 3 from annealing in corundum crucible | 2.15 ± 0.08 |
Sample | Ms/emu/g | Mr/emu/g | Hc/Oe |
---|---|---|---|
Powder | 71.1 | 12.8 | 226.1 |
Crystal 1 from initial synthesis | 67.8 | 0.9 | 33.0 |
Crystal 2 from annealing in platinum crucible | 68.1 | 0.4 | 18.1 |
Crystal 3 from annealing in corundum crucible | 69.9 | 0.3 | 10.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Häßner, M.; Vinnik, D.A.; Niewa, R. Thermal History Dependent Al Distribution in Aluminum Substituted Strontium Hexaferrite. Materials 2020, 13, 858. https://doi.org/10.3390/ma13040858
Häßner M, Vinnik DA, Niewa R. Thermal History Dependent Al Distribution in Aluminum Substituted Strontium Hexaferrite. Materials. 2020; 13(4):858. https://doi.org/10.3390/ma13040858
Chicago/Turabian StyleHäßner, Manuel, Denis A. Vinnik, and Rainer Niewa. 2020. "Thermal History Dependent Al Distribution in Aluminum Substituted Strontium Hexaferrite" Materials 13, no. 4: 858. https://doi.org/10.3390/ma13040858
APA StyleHäßner, M., Vinnik, D. A., & Niewa, R. (2020). Thermal History Dependent Al Distribution in Aluminum Substituted Strontium Hexaferrite. Materials, 13(4), 858. https://doi.org/10.3390/ma13040858