Glass–Ceramics in Dentistry: A Review
Abstract
:1. The History of Glass–Ceramics and Dental Glass–Ceramics
2. Properties and Applications of Glass–Ceramics
3. Microstructure and Preparation of Glass–Ceramic
3.1. Microstructure Differences between Glass, Glass–Ceramic, and Ceramic
3.2. Preparation of Glass–Ceramic
4. Property Requirements of Dental Prostheses
4.1. Mechanical Properties
4.2. Esthetics
4.3. Chemical Resistance
5. Manufacturing of Dental Restorations
5.1. CAD–CAM Workflow
5.2. Additive Manufacturing (AM) Technique
6. Commercially Available and Newly–Developed Dental Glass–Ceramics
6.1. Mica–Based Dental Glass–Ceramic
6.2. Leucite–Based Dental Glass–Ceramic
6.3. Lithium Disilicate (LD)
6.4. Newly Developed Glass–Ceramic: ZrO2–SiO2 Nanocrystalline Glass–Ceramics
7. Strengthening Mechanisms of Glass–Ceramics
7.1. Interlocking Effect
7.2. ZrO2–Reinforced Glass–Ceramics
7.3. Thermal Residual Stress
7.4. Strengthening by 3D Nanoarchitecture
8. Future Glass–Ceramics in Dentistry
8.1. Manufacturing
8.2. Application
8.3. Multifunctionality
9. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zanotto, E.D. A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 2010, 89, 19–27. [Google Scholar]
- Larry, S.M.B.; Hench, L. Ceramics, glasses, and glass-ceramics: Basic principles. In Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Pinckney, L.R. Glass ceramics. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Pergamon: Oxford, UK, 2001. [Google Scholar]
- El-Meliegy, E.; van Noort, R. Machinable mica dental glass-ceramics. In Glasses and Glass Ceramics for Medical Applications; Springer: New York, NY, USA, 2012; pp. 1–244. [Google Scholar] [CrossRef]
- Hoeland, W.; Beall, G.H. (Eds.) Glass-Ceramic Technology, 2nd ed.; The American Ceramic Society/Wiley: New York, NY, USA, 2010. [Google Scholar]
- Beall, G.H. Milestones in glass-ceramics: A personal perspective. Int. J. Appl. Glas. Sci. 2014, 5, 93–103. [Google Scholar] [CrossRef]
- Filser, F. Direct Ceramic Machining of Dental Restorations. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2001. [Google Scholar] [CrossRef]
- Edward, A.M.; Phong, T.C. Ceramics in Dentistry—Part I: Classes of Materials. Inside Dent. 2009, 7, 94–103. [Google Scholar]
- Zhang, Y.; Kelly, J.R. Dental ceramics for restoration and metal veneering. Dent. Clin. N. Am. 2017, 61, 797–819. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.H.; de Lima, E.; Miranda, D.P.R.B.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, e58. [Google Scholar] [CrossRef]
- Ritzberger, C.; Apel, E.; Höland, W.; Peschke, A.; Rheinberger, V.M. Properties and clinical application of three types of dental glass-ceramics and ceramics for CAD-CAM technologies. Materials 2010, 3, 3700–3713. [Google Scholar] [CrossRef] [Green Version]
- Montazerian, M.; Zanotto, E.D. Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. Part A 2016, 1, 619–639. [Google Scholar] [CrossRef]
- Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P. Performance of dental ceramics: Challenges for improvements. J. Dent. Res. 2011, 90, 937–952. [Google Scholar] [CrossRef] [Green Version]
- Ivoclar-Vivadent. Press Scientific Documentation IPS e.max®; Ivoclar Vivadent: Liechtenstein, 2011. [Google Scholar]
- Willard, A.; Gabriel Chu, T.M. The science and application of IPS e.Max dental ceramic. Kaohsiung J. Med. Sci. 2018, 34, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Serbena, F.C.; Mathias, I.; Foerster, C.E.; Zanotto, E.D. Crystallization toughening of a model glass-ceramic. Acta Mater. 2015, 86, 216–228. [Google Scholar] [CrossRef]
- Kleebusch, E.; Patzig, C.; Höche, T.; Rüssel, C. The evidence of phase separation droplets in the crystallization process of a Li2O-Al2O3-SiO2 glass with TiO2 as nucleating agent—An X-ray diffraction and (S)TEM-study supported by EDX-analysis. Ceram. Int. 2018, 44, 2919–2926. [Google Scholar] [CrossRef]
- Alekseeva, I.; Dymshits, O.; Tsenter, M.; Zhilin, A.; Golubkov, V.; Denisov, I.; Skoptsov, N.; Malyarevich, A.; Yumashev, K. Optical applications of glass-ceramics. J. Non Cryst. Solids 2010, 356, 3042–3058. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inda, Y.; Katoh, T.; Baba, M. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J. Power Sources 2007, 174, 741–744. [Google Scholar] [CrossRef]
- James, P.F. Glass ceramics: New compositions and uses. J. Non Cryst. Solids. 1995, 181, 1–15. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Tulyaganov, D.U.; Goel, A.; Ferreira, J.M.F. Effect of K2O on structure-property relationships and phase transformations in Li2O-SiO2 glasses. J. Eur. Ceram. Soc. 2012, 32, 291–298. [Google Scholar] [CrossRef]
- Zhu, T.; Xie, Z.; Han, Y.; Li, S. Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering. Ceram. Int. 2018, 44, 505–510. [Google Scholar] [CrossRef]
- Natarajan, S. Glass-ceramic technology, second edition by Wolfram Holand and George H. Beall. Mater. Manuf. Process. 2016, 31, 550–551. [Google Scholar] [CrossRef]
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; Höche, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R.; et al. Updated definition of glass-ceramics. J. Non Cryst. Solids. 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Kleebusch, E.; Patzig, C.; Höche, T.; Rüssel, C. Phase formation during crystallization of a Li2O–Al2O3–SiO2 glass with ZrO2 as nucleating agent—An X-ray diffraction and (S)TEM-study. Ceram. Int. 2017, 43, 9769–9777. [Google Scholar] [CrossRef]
- Zhao, T.; Qin, Y.; Wang, B.; Yang, J.F. Improved densification and properties of pressureless-sintered lithium disilicate glass-ceramics. Mater. Sci. Eng. A 2014, 620, 399–406. [Google Scholar] [CrossRef]
- Yong, L.; Tan, Y.; Grover, L.; Guo, Y.; Bowei, L. A mica/nepheline glass-ceramic prepared by melting and powder metallurgy at low temperatures. Mater. Today Commun. 2017, 11, 87–93. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Yang, J.; Xu, S. Effect of heat treatment on the microstructure and properties of lithium disilicate glass-ceramics. J. Non Cryst. Solids 2014, 402, 101–105. [Google Scholar] [CrossRef]
- Chenu, S.; Véron, E.; Genevois, C.; Matzen, G.; Cardinal, T.; Etienne, A.; Massiot, D.; Allix, M. Tuneable nanostructuring of highly transparent zinc gallogermanate glasses and glass-ceramics. Adv. Opt. Mater. 2014, 2, 364–372. [Google Scholar] [CrossRef]
- Mallik, A.; Basumajumdar, A.; Kundu, P.; Maiti, P.K. Some studies on nucleation, crystallization, microstructure and mechanical properties of mica glass-ceramics in the system 0.2BaO·0.8K2O·4MgO·Al2O3·6SiO2·2MgF2. Ceram. Int. 2013, 39, 2551–2559. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, W.; Chen, X.; Wang, F.; Bai, S. Sintering densification behaviors and crystallization characteristics of glass–ceramics formed by two types of CaO–B2O3–SiO2 glass. J. Mater. Sci. Mater. Electron. 2019, 30, 10352–10359. [Google Scholar] [CrossRef]
- Fu, L.; Wu, C.; Grandfield, K.; Unosson, E.; Chang, J.; Engqvist, H.; Xia, W. Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS. J. Eur. Ceram. Soc. 2016, 36, 3487–3494. [Google Scholar] [CrossRef]
- Nogami, M.; Nagasaka, K. Toughened glass-ceramics in the ZrO2-Al2O3-SiO2 system prepared by the sol-gel process. J. Mater. Sci. 1991, 26, 3665–3669. [Google Scholar] [CrossRef]
- Zhang, Y.; Sailer, I.; Lawn, B.R. Fatigue of dental ceramics. J. Dent. 2013, 41, 1135–1147. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J. Ceramics in restorative and prosthetic dentistry. Annu. Rev. Mater. Sci. 1997, 27, 443–468. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, H.; Aydin, C.; Gul, B.E. Flexural strength and fracture toughness of dental core ceramics. J. Prosthet. Dent. 2007, 98, 120–128. [Google Scholar] [CrossRef]
- Arvind, S.; Nina, S. Dental ceramics: An update. J. Conserv. Dent. 2010, 13, 195–203. [Google Scholar] [CrossRef]
- Miragaya, L.M.; Guimarães, R.B.; de Assunção e Souza, R.O.; dos Santos Botelho, G.; Antunes Guimarães, J.G.; da Silva, E.M. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. J. Mech. Behav. Biomed. Mater. 2017, 72, 14–21. [Google Scholar] [CrossRef] [PubMed]
- ISO. International Standard ISO 6872 Dentistry—Ceramic Materials; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Santos, M.J.M.C.; Costa, M.D.; Rubo, J.H.; Pegoraro, L.F. Current all-ceramic systems in dentistry: A review. Compend. Contin. Educ. Dent. 2015, 36, 31–38. [Google Scholar]
- El Ghoul, W.A.; Özcan, M.; Ounsi, H.; Tohme, H.; Salameh, Z. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. J. Prosthet. Dent. 2019, 123, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Sedrez-Porto, J.A.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Münchow, E.A.; Pereira-Cenci, T. Endocrown restorations: A systematic review and meta-analysis. J. Dent. 2016, 52, 8–14. [Google Scholar] [CrossRef]
- Ivoclar-Vivadent. CAD Scientific Documentation IPS e.max®; Ivoclar Vivadent: Liechtenstein, 2005. [Google Scholar]
- Tidehag, P.; Shen, Z. Digital dentistry calls the change of ceramics and ceramic processes. Adv. Appl. Ceram. 2019, 118, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Hugo, L.; Jean, D.; Bruno, J.; Michel, F. Dental biomaterials for chairside CAD/CAM: State of the art. J. Adv. Prosthodont. 2017, 9, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Galante, R.; Figueiredo-Pina, C.G.; Serro, A.P. Additive manufacturing of ceramics for dental applications: A review. Dent. Mater. 2019, 35, 825–846. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Wilkes, J.; Hagedorn, Y.C.; Meiners, W.; Wissenbach, K. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Özkol, E.; Zhang, W.; Ebert, J.; Telle, R. Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations. J. Eur. Ceram. Soc. 2012, 32, 2193–2201. [Google Scholar] [CrossRef]
- Gahler, A.; Heinrich, J.G.; Günster, J. Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition. J. Am. Ceram. Soc. 2006, 89, 3076–3080. [Google Scholar] [CrossRef]
- Li, H.; Song, L.; Sun, J.; Ma, J.; Shen, Z. Dental ceramic prostheses by stereolithography-based additive manufacturing: Potentials and challenges. Adv. Appl. Ceram. 2019, 118, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Gailevičius, D.; Padolskytė, V.; Mikoliūnaitė, L.; Šakirzanovas, S.; Juodkazis, S.; Malinauskas, M. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horizons 2019, 4, 647–651. [Google Scholar] [CrossRef]
- Gali, S. Mica glass ceramics for dental restorations. Mater. Technol. 2019, 34, 2–11. [Google Scholar] [CrossRef]
- Denry, I.L.; Holloway, J.A. Effect of heat pressing on the mechanical properties of a mica-based glass-ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 70, 37–42. [Google Scholar] [CrossRef]
- Chen, X.; Chadwick, T.C.; Wilson, R.M.; Hill, R.G.; Cattell, M.J. Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. Dent. Mater. 2011, 27, 1153–1161. [Google Scholar] [CrossRef]
- Theocharopoulos, A.; Chen, X.; Wilson, R.M.; Hill, R.; Cattell, M.J. Crystallization of high-strength nano-scale leucite glass-ceramics. Dent. Mater. 2013, 29, 1149–1157. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Yang, J.; Xu, S. The crystallization and microstructure evolution of lithium disilicate-based glass-ceramic. J. Non Cryst. Solids 2014, 392–393, 26–30. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Liu, Y.; Sheng, X.; Dan, X. Preparation of mica-based glass-ceramics with needle-like fluorapatite. Dent. Mater. 2007, 23, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ivoclar-Vivadent. Classic Scientific Documentation IPS e.max®; Ivoclar Vivadent: Schaan, Liechtenstein, 2003. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Anusavice, K.J.; Young, H.; Jones, J.; Gibbs, C. Clinical performance of a lithia disilicate-based core ceramic for three-unit posterior FPDs. Int. J. Prosthodont. 2004, 17, 469–475. [Google Scholar]
- Li, R.W.K.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Lohbauer, U.; Belli, R.; Abdalla Alonso, A.; Goetz-Neunhoeffer, F.; Hurle, K. Effect of sintering parameters on phase evolution and strength of dental lithium silicate glass-ceramics. Dent. Mater. 2019, 35, 1360–1369. [Google Scholar] [CrossRef]
- Kang, S.-H.; Chang, J.; Son, H.-H. Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic. Restor. Dent. Endod. 2013, 38, 134–140. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Highly translucent and strong ZrO2-SiO2 nanocrystalline glass ceramic prepared by sol-gel method and spark plasma sintering with fine 3D microstructure for dental restoration. J. Eur. Ceram. Soc. 2017, 37, 4067–4081. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Kern, M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. J. Mech. Behav. Biomed. Mater. 2018, 82, 355–370. [Google Scholar] [CrossRef]
- Quinn, G.D. Fractography of Ceramics and Glasses; Special Publication 960-16e2; NIST: Gaithersburg, MD, USA, 2007.
- Anderson, T.L. Fracture mechanics: Fundamentals and Applications; Taylor & Francis: Milton Park, UK, 2012. [Google Scholar]
- Riquieri, H.; Monteiro, J.B.; Viegas, D.C.; Campos, T.M.B.; de Melo, R.M.; de Siqueira Ferreira Anzaloni Saavedra, G. Impact of crystallization firing process on the microstructure and flexural strength of zirconia-reinforced lithium silicate glass-ceramics. Dent. Mater. 2018, 34, 1483–1491. [Google Scholar] [CrossRef] [Green Version]
- Apel, E.; Van Hoen, C.; Rheinberger, V.; Wolfram, H. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J. Eur. Ceram. Soc. 2007, 27, 1571–1577. [Google Scholar] [CrossRef]
- Yang, H.; Wu, S.; Hu, J.; Wang, Z.; Wang, R.; He, H. Influence of nano-ZrO2 additive on the bending strength and fracture toughness of fluoro-silicic mica glass-ceramics. Mater. Des. 2011, 32, 1590–1593. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, X.; Zhao, G.; Zhong, B.; Zhang, X.; Wen, G. Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass-ceramic composites. Mater. Chem. Phys. 2014, 143, 845–852. [Google Scholar] [CrossRef]
- Chen, X.P.; Xiang, Z.X.; Song, X.F.; Yin, L. Machinability: Zirconia-reinforced lithium silicate glass ceramic versus lithium disilicate glass ceramic. J. Mech. Behav. Biomed. Mater. 2020, 101, 103435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, C.; Chang, J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater. Today 2019, 24, 41–56. [Google Scholar] [CrossRef]
- Montazerian, M.; Alizadeh, P.; Eftekhari Yekta, B. Processing and properties of a mica-apatite glass-ceramic reinforced with Y-PSZ particles. J. Eur. Ceram. Soc. 2008, 28, 2693–2699. [Google Scholar] [CrossRef]
- Gali, S.; Ravikumar, K.; Murthy, B.V.S.; Basu, B. Zirconia toughened mica glass ceramics for dental restorations. Dent. Mater. 2018, 34, e36–e45. [Google Scholar] [CrossRef]
- Gali, S.; RaviKumar, K. Zirconia toughened mica glass ceramics for dental restorations: Wear, thermal, optical and cytocompatibility properties. Dent. Mater. 2019, 35, 1706–1717. [Google Scholar] [CrossRef]
- Serbena, F.C.; Zanotto, E.D. Internal residual stresses in glass-ceramics: A review. J. Non Cryst. Solids 2012, 358, 975–984. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Gou, J. Mechanical properties and microstructure of ZrO2–SiO2 composite. J. Mater. Sci. 1997, 2, 197–201. [Google Scholar] [CrossRef]
- Li, D.; Guo, J.W.; Wang, X.S.; Zhang, S.F.; He, L. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic. Mater. Sci. Eng. A 2016, 669, 332–339. [Google Scholar] [CrossRef]
- Fu, L.; Xie, L.; Fu, W.; Hu, S.; Zhang, Z.; Leifer, K.; Engqvist, H.; Xia, W. Ultrastrong translucent glass ceramic with nanocrystalline, biomimetic structure. Nano Lett. 2018, 18, 7146–7154. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Langdon, T.G. The toughening and strengthening of ceramic materials through discontinuous reinforcement. J. Mater. Sci. 1994, 29, 5219–5231. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Compr. Biomater. 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Khan, A.; Philip, J.; Hess, P. Young’s modulus of silicon nitride used in scanning force microscope cantilevers. J. Appl. Phys. 2004, 95, 1667–1672. [Google Scholar] [CrossRef] [Green Version]
- Caligiana, G.; Francia, D.; Liverani, A. CAD-CAM integration for 3D hybrid manufacturing. In Advances on Mechanics, Design Engineering and Manufacturing; Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Gentile, P.; Pires, R.A.; Reis, R.L.; Hatton, P.V. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 2017, 59, 2–11. [Google Scholar] [CrossRef] [Green Version]
Glass–Ceramic | Commercial Brand | Crystalline Microstructure | Manufacturing Technique | Mechanical Properties & CTE | Clinic Indication |
---|---|---|---|---|---|
Mica–based [4,55,56] | Dicor® (Corning Inc, Dentsply), Cera Pearl® (Kyocera Corp) | Morphology: plate–like crystals; Composition: K2Mg5Si8O20F4; Size: 2–5 µm (length), ~200 nm (thickness) | Castable CAD/CAM | σ: 90–130 MPa Hv: 4–6.5 GPa KIc: 0.8–1.5 MPa·m1/2 E: ~70 GPa CTE:6.4–7.2 × 10−6 K−1 | Resin–bonded laminate veneers, anterior crowns, posterior inlays |
Leucite–based [4,57,58] | IPS Empress®, IPS Empress® CAD (Ivoclar), Optimum Pressable CeramicOPC® (Jeneric/Pentron), Finesse® (Dentsply) | Morphology: lamina–like crystals (35–50 wt%); Composition: tetragonal KAlSi2O6; Size: 1–4 µm | Hot press CAD/CAM | σ: 80–120 MPa Hv: ~6.5 GPa KIc: 0.7–1.2 MPa·m1/2 E: ~70 GPa CTE:16.6 × 10−6 K−1 (100–400 °C), 17.5 × 10−6 K−1 (100–500 °C) | Resin–bonded laminate veneers, inlays, onlays, and crown |
Lithium disilicate [4,27,29,59] | IPS e.max Press®, IPS e.max CAD® (Ivoclar) | Morphology: needle–like crystals (approx. 70 vol%); Composition: Li2Si2O5; Size: 3–6 µm (length) | Hot press CAD/CAM | σ: 350–450MPa Hv: 4–6.5 GPa KIc: 0.8–1.5MPa·m1/2 E: ~70 GPa CTE:10.2 ± 0.4 × 10−6K−1 (100–400 °C), 10.6 ± 0.35 10−6 K−1 (100–500 °C) | Resin–bonded laminate veneers, inlays and onlays, crowns, bridges in the anterior region up to premolars |
Zirconia reinforced lithium silicate [60] | Vita Suprinity® (Vita Zahnfabrick, Bad Säckingen, Germany) | Morphology: homogeneous fine Li2SiO3 crystals, ZrO2 particles (~70 wt%); | CAD/CAM | σ: 444 ± 39 MPa Hv: 6.5 ± 0.5 GPa KIc: 2.31 ± 0.17 MPa·m1/2 E: 70 ± 2 GPa | inlays, onlays, veneers, anterior and posterior crowns, single tooth restorations on implant abutments |
Enamel [12] | – | Hydroxyapatite crystals (approx.90 vol%); Composition: Ca5(PO4)3OH; Size: 3–6 µm (length) | – | σ: 260–280 MPa Hv: 3–5 GPa KIc: 0.6–1.5 MPa·m1/2 E: 70–100 GPa | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Engqvist, H.; Xia, W. Glass–Ceramics in Dentistry: A Review. Materials 2020, 13, 1049. https://doi.org/10.3390/ma13051049
Fu L, Engqvist H, Xia W. Glass–Ceramics in Dentistry: A Review. Materials. 2020; 13(5):1049. https://doi.org/10.3390/ma13051049
Chicago/Turabian StyleFu, Le, Håkan Engqvist, and Wei Xia. 2020. "Glass–Ceramics in Dentistry: A Review" Materials 13, no. 5: 1049. https://doi.org/10.3390/ma13051049
APA StyleFu, L., Engqvist, H., & Xia, W. (2020). Glass–Ceramics in Dentistry: A Review. Materials, 13(5), 1049. https://doi.org/10.3390/ma13051049