Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Capsules
- Ordinary Portland cement (CEM I 52.5 R, Buzzi Unicem S.p.A., Casale Monferrato, Italy);
- Calcium carbonate (CaCO3, Sinopia s.a.s., Torino, Italy);
- Metakaolin (halloysite from Applied Minerals Inc., New York City, NY, USA, calcined at 650 °C for 3 hours);
- Hydroxypropyl methylcellulose (HPMC, Sigma Aldrich, Milano, Italy).
- Demineralised water;
- Copolymer of ethyl acrylate (EA) and methylmetacrylate (MMA) (Primal B60A, Sinopia s.a.s., Torino, Italy);
- Polyethylene glycol (PEG, Sigma Aldrich, Italy).
2.2. Mortar Prisms
2.3. Pre-Cracking
2.4. Static Reloading
2.5. Cyclic Reloading
3. Results and Discussion
3.1. Pre-Cracking
3.2. Static Reloading
3.3. Cyclic Reloading
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Metha, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 3rd ed.; Mc Graw-Hill: New York, USA, 2006. [Google Scholar]
- Leahy, C.; OBrien, E.; O’Connor, A. The Effect of Traffic Growth on Characteristic Bridge Load Effects. Transp. Res. Procedia 2016, 14, 3990–3999. [Google Scholar] [CrossRef] [Green Version]
- Bayane, I.; Mankar, A.; Brühwiler, E.; Sørensen, J.D. Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Eng. Struct. 2019, 196, 109357. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, C.S.; He, W.; Peng, H. Prediction of bridge maximum load effects under growing traffic using non-stationary bayesian method. Eng. Struct. 2019, 185, 171–183. [Google Scholar] [CrossRef]
- Self-Healing Phenomena in Cement-Based Materials: State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials; de Rooij, M.; Van Tittelboom, K.; De Belie, N.; Schlangen, E. (Eds.) Springer Netherlands: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Van Tittelboom, K.; De Belie, N. Self-healing in cementitious materials-a review. Materials (Basel) 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Qureshi, T.S.; Al-Tabbaa, A. Glass encapsulated minerals for self-healing in cement based composites. Constr. Build. Mater. 2015, 98, 780–791. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; Wang, J.; Araújo, M.; Snoeck, D.; Gruyaert, E.; Debbaut, B.; Derluyn, H.; Cnudde, V.; Tsangouri, E.; Van Hemelrijck, D.; et al. Comparison of different approaches for self-healing concrete in a large-scale lab test. Constr. Build. Mater. 2016, 107, 125–137. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 2016, 121, 629–643. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Shui, Z. Feasibility of self-healing in cementitious materials—By using capsules or a vascular system? Constr. Build. Mater. 2014, 63, 108–118. [Google Scholar] [CrossRef]
- Souza, L.; Al-Tabbaa, A. Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials. Constr. Build. Mater. 2018, 184, 713–722. [Google Scholar] [CrossRef]
- Ait Ouarabi, M.; Antonaci, P.; Boubenider, F.; Gliozzi, A.; Scalerandi, M. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems. Materials (Basel) 2017, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglani, G.; Antonaci, P.; Gliozzi, A.S.; Scalerandi, M. Ultrasonic investigation on the fracture-healing mechanism due to alkaline silicate solutions. In Proceedings of the 14th International Conference on Fracture (ICF14), Rhodes, Greece, 18–23 June 2017; Gdoutos, E.E., Ed.; pp. 120–121. [Google Scholar]
- Gliozzi, A.S.; Scalerandi, M.; Anglani, G.; Antonaci, P.; Salini, L. Correlation of elastic and mechanical properties of consolidated granular media during microstructure evolution induced by damage and repair. Phys. Rev. Mater. 2018, 2, 013601. [Google Scholar] [CrossRef]
- Maes, M.; Van Tittelboom, K.; De Belie, N. The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments. Constr. Build. Mater. 2014, 71, 528–537. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; Tsangouri, E.; Van Hemelrijck, D.; De Belie, N. The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Cem. Concr. Compos. 2015, 57, 142–152. [Google Scholar] [CrossRef]
- Van Belleghem, B.; Van den Heede, P.; Van Tittelboom, K.; De Belie, N. Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete. Materials (Basel) 2016, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Van den Heede, P.; Van Belleghem, B.; Alderete, N.; Van Tittelboom, K.; De Belie, N. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials. Materials (Basel) 2016, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Van Tittelboom, K.; De Belie, N.; Van Loo, D.; Jacobs, P. Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem. Concr. Compos. 2011, 33, 497–505. [Google Scholar] [CrossRef]
- Van Mullem, T.; Van Tittelboom, K.; Gruyaert, E.; Caspeele, R.; De Belie, N. Development of an improved cracking method to reduce the variability in testing the healing efficiency of self-healing mortar containing encapsulated polymers. MATEC Web Conf. 2018, 199, 02017. [Google Scholar] [CrossRef] [Green Version]
- Anglani, G.; Antonaci, P.; Idone, G.; Tulliani, J.-M. Self-healing of cementitious materials via embedded macro-capsules. In Proceedings of the 4th International Conference on Service Life Design for Infrastructures (SLD4), Delft, The Netherlands, 27–30 August 2018; Ye, G., Yuan, Y., Romero Rodriguez, C., Zhang, H., Šavija, B., Eds.; RILEM Publications S.A.R.L.: Paris, France, 2018; pp. 385–388. [Google Scholar]
- Feiteira, J.; Gruyaert, E.; De Belie, N. Self-healing of moving cracks in concrete by means of encapsulated polymer precursors. Constr. Build. Mater. 2016, 102, 671–678. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; Lehmann, F.; Grosse, C.U. Acoustic emission analysis for the quantification of autonomous crack healing in concrete. Constr. Build. Mater. 2012, 28, 333–341. [Google Scholar] [CrossRef]
- Feiteira, J.; Tsangouri, E.; Gruyaert, E.; Lors, C.; Louis, G.; De Belie, N. Monitoring crack movement in polymer-based self-healing concrete through digital image correlation, acoustic emission analysis and SEM in-situ loading. Mater. Des. 2017, 115, 238–246. [Google Scholar] [CrossRef]
- Snoeck, D.; De Belie, N. From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing—A review. Constr. Build. Mater. 2015, 95, 774–787. [Google Scholar] [CrossRef]
- Snoeck, D.; Smetryns, P.A.; De Belie, N. Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosyst. Eng. 2015, 139, 87–99. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Z.; Hou, P.; Du, P.; Zhang, L.; Xu, H. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Constr. Build. Mater. 2016, 107, 191–202. [Google Scholar] [CrossRef]
- Cuenca, E.; Ferrara, L. Repeatability of Self-Healing in Fiber Reinforced Concretes with and without Crystalline Admixtures: Preliminary Results. ACI Spec. Publ. 2017, 319, 11.1–11.18. [Google Scholar]
- Cuenca, E.; Tejedor, A.; Ferrara, L. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 2018, 179, 619–632. [Google Scholar] [CrossRef]
- Feiteira, J.; Couvreur, V.; Gruyaert, E.; De Belie, N. Resistance to fatigue of self-healed concrete based on encapsulated polymer precursors. In Proceedings of the Concrete Solutions—Proceedings of Concrete Solutions, 6th International Conference on Concrete Repair, Thessaloniki, Greece, 20–23 June 2016; Grantham, M.G., Papayianni, I., Sideris, K., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 585–590. [Google Scholar]
- Yang, Z.; Hollar, J.; He, X.; Shi, X. A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Compos. 2011, 33, 506–512. [Google Scholar] [CrossRef]
- Cunha, V.M.C.F.; Barros, J.A.O.; Sena-Cruz, J.M. Pullout Behavior of Steel Fibers in Self-Compacting Concrete. J. Mater. Civ. Eng. 2010, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, T.; Koda, M.; Yamada, M.; Mihashi, H.; Kikuta, T. Experimental study on self-healing capability of FRCC using different types of synthetic fibers. J. Adv. Concr. Technol. 2012, 10, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Coppola, B.; Di Maio, L.; Incarnato, L.; Martinelli, E. Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: Experimental tests under different environmental exposures. Compos. Part B Eng. 2019, 168, 511–523. [Google Scholar] [CrossRef]
- Naaman, A.E.; Hammoud, H. Fatigue characteristics of high performance fiber-reinforced concrete. Cem. Concr. Compos. 1998, 20, 353–363. [Google Scholar] [CrossRef]
- Singh, S.P.; Kaushik, S.K. Fatigue strength of steel fibre reinforced concrete in flexure. Cem. Concr. Compos. 2003, 25, 779–786. [Google Scholar] [CrossRef]
- Graeff, A.G.; Pilakoutas, K.; Neocleous, K.; Peres, M.V.N.N. Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Eng. Struct. 2012, 45, 385–395. [Google Scholar] [CrossRef]
- Van Mullem, T.; Gruyaert, E.; Debbaut, B.; Caspeele, R.; De Belie, N. Novel active crack width control technique to reduce the variation on water permeability results for self-healing concrete. Constr. Build. Mater. 2019, 203, 541–551. [Google Scholar] [CrossRef]
- Ferrara, L.; Van Mullem, T.; Alonso, M.C.; Antonaci, P.; Borg, R.P.; Cuenca, E.; Jefferson, A.; Ng, P.-L.; Peled, A.; Roig-Flores, M.; et al. Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Constr. Build. Mater. 2018, 167, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Formia, A.; Terranova, S.; Antonaci, P.; Pugno, N.M.; Tulliani, J.M. Setup of extruded cementitious hollow tubes as containing/releasing devices in self-healing systems. Materials 2015, 8, 1897–1923. [Google Scholar] [CrossRef] [PubMed]
- Formia, A.; Irico, S.; Bertola, F.; Canonico, F.; Antonaci, P.; Pugno, N.M.; Tulliani, J.-M. Experimental analysis of self-healing cement-based materials incorporating extruded cementitious hollow tubes. J. Intell. Mater. Syst. Struct. 2016, 27, 1–20. [Google Scholar] [CrossRef]
- Anglani, G.; Antonaci, P.; Tulliani, J.-M.; Van Tittelboom, K.; Wang, J.; De Belie, N. Self-healing efficiency of cement-based materials containing extruded cementitious hollow tubes filled with bacterial healing agent. In Proceedings of the Final Conference of RILEM TC 253-MCI: Microorganisms-Cementitious Materials Interactions, Toulouse, France, 25–26 June 2018; Bertron, A., Jonkers, H., Eds.; RILEM Publications S.A.R.L.: Paris, France, 2018; pp. 425–431. [Google Scholar]
- Homma, D.; Mihashi, H.; Nishiwaki, T. Self-Healing Capability of Fibre Reinforced Cementitious Composites. J. Adv. Concr. Tecnol. 2009, 7, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, L.; Krelani, V.; Carsana, M. A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 2014, 68, 535–551. [Google Scholar] [CrossRef]
- Thao, T.D.P.; Johnson, T.J.S.; Tong, Q.S.; Dai, P.S. Implementation of self-healing in concrete–Proof of concept. IES J. Part. A Civ. Struct. Eng. 2009, 2, 116–125. [Google Scholar] [CrossRef]
- CEN—European Committee for Standardization. Eurocode 2. Design of Concrete Structures—Part. 1–1: General Rules and Rules for Buildings; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Šavija, B.; Feiteira, J.; Araújo, M.; Chatrabhuti, S.; Raquez, J.-M.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Schlangen, E.; Šavija, B.; et al. Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete. Materials (Basel) 2016, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bu, J.; Fan, X.; Lu, J.; Xu, L. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension. Constr. Build. Mater. 2017, 133, 367–375. [Google Scholar] [CrossRef]
- Poveda, E.; Ruiz, G.; Cifuentes, H.; Yu, R.C.; Zhang, X. Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. Int. J. Fatigue 2017, 101, 9–17. [Google Scholar] [CrossRef]
- Sui, L.; Zhong, Q.; Yu, K.; Xing, F.; Li, P.; Zhou, Y. Flexural fatigue properties of ultra-high performance engineered cementitious composites (UHP-ECC) reinforced by polymer fibers. Polymers (Basel) 2018, 10, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, Z.; Stang, H. Fatigue performance in flexure of fiber reinforced concrete. ACI Mater. J. 1998, 95, 58–67. [Google Scholar]
- Huang, B.T.; Li, Q.H.; Xu, S.L. Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function. J. Struct. Eng. (United States) 2019, 145, 04018234. [Google Scholar] [CrossRef]
- Carlesso, D.M.; de la Fuente, A.; Cavalaro, S.H.P. Fatigue of cracked high performance fiber reinforced concrete subjected to bending. Constr. Build. Mater. 2019, 220, 444–455. [Google Scholar] [CrossRef]
- Germano, F.; Tiberti, G.; Plizzari, G. Post-peak fatigue performance of steel fiber reinforced concrete under flexure. Mater. Struct. Constr. 2016, 49, 4229–4245. [Google Scholar] [CrossRef]
- Qiu, J.; Lim, X.N.; Yang, E.H. Fatigue-induced deterioration of the interface between micro-polyvinyl alcohol (PVA) fiber and cement matrix. Cem. Concr. Res. 2016, 90, 127–136. [Google Scholar] [CrossRef]
- Coppola, B.; Di Maio, L.; Scarfato, P.; Incarnato, L. Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2015; Volume 1695, p. 020056. [Google Scholar]
- Qiu, J.; Lim, X.N.; Yang, E.H. Fatigue-induced in-situ strength deterioration of micro-polyvinyl alcohol (PVA) fiber in cement matrix. Cem. Concr. Compos. 2017, 82, 128–136. [Google Scholar] [CrossRef]
Cement (wt %) | Water (wt %) | Water/Cement Ratio (-) | CaCO3 (wt %) | Metakaolin (wt %) | HPMC (wt %) | Primal B60A (wt %) | PEG (wt %) |
---|---|---|---|---|---|---|---|
46.2 | 12.8 | 0.28 | 21.3 | 0.3 | 0.7 | 17.0 | 1.7 |
SI Capsule | LI Capsule | LE Capsule | ||
---|---|---|---|---|
Manufacturing process | Rolling | Extrusion | Extrusion | |
Surface of the tubular shell coated with epoxy | Internal | Internal | External | |
Average internal diameter of the tubular shell | (mm) | 5 | 7.5 | 7.5 |
Average external diameter of the tubular shell | (mm) | 8 | 10 | 10 |
Average length of the capsule | (mm) | 60 | 45 | 45 |
Average thickness of the epoxy coating | (mm) | 1 | 1 | 1 |
Average internal diameter after epoxy coating | (mm) | 3 | 5.5 | 7.5 |
Injected volume of PU precursor | (mL) | ~ 0.3 | ~ 0.6 | ~ 0.9 |
Series | Lpeak | Lunload | Lreduction |
---|---|---|---|
(N) | (N) | (%) | |
REF | 1844 ± 140 | 14 ± 5 | - |
CEM_SI | 1694 ± 86 | 88 ±2 4 | 8 |
CEM_LI | 1611 ± 147 | 59 ± 15 | 13 |
CEM_LE | 1737 ± 125 | 143 ± 58 | 6 |
Series | Lpeak | Lunload | Lreload | LRI |
---|---|---|---|---|
(N) | (N) | (N) | (%) | |
REF | 1844 ± 140 | 14 ± 5 | 15 ± 9 | 0.1 ± 0.4 |
CEM_SI | 1694 ± 86 | 88 ± 24 | 659 ± 137 1 | 35.9 ± 17.4 1 |
CEM_LI | 1611 ± 147 | 59 ± 15 | 547 ± 105 | 30.8 ± 6.7 |
CEM_LE | 1737 ± 125 | 143 ± 58 | 869 ± 57 | 46.5 ± 3.6 |
Series | No. | Lpeak | Lunload,p | Lreload,1 | LRI,1 | Lunload,1 | Lreload,2 | LRI,2 |
---|---|---|---|---|---|---|---|---|
(N) | (N) | (N) | (%) | (N) | (N) | (%) | ||
CEM_LE | 9 | 1531 | 258 | 896 | 50 | 165 | 1280 | 82 |
Load Level S | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | |
---|---|---|---|---|---|---|---|---|---|
Series | No. | Number of Cycles N | |||||||
REF | all | 0 | - | - | - | - | - | - | - |
CEM_SI | 9 | 1177 | - | - | - | - | - | - | - |
4 | 7881 | - | - | - | - | - | - | - | |
6 | 10,000 | 10,000 | 7,625 | - | - | - | - | - | |
CEM_LI | 5 | 381 | - | - | - | - | - | - | - |
7 | 8,138 | - | - | - | - | - | - | - | |
11 | 10,000 | 3,557 | - | - | - | - | - | - | |
12 | 10,000 | 10,000 | 10,000 | 2,141 | - | - | - | - | |
1 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 2,940 | - | - | |
8 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 7,797 | |
CEM_LE | 2 | 2,732 | - | - | - | - | - | - | - |
11 | 5,503 | - | - | - | - | - | - | - | |
1 | 10,000 | 816 | - | - | - | - | - | - | |
12 | 10,000 | 921 | - | - | - | - | - | - |
Load Level S | |||||||||
---|---|---|---|---|---|---|---|---|---|
Series | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | |
Lmax/Lunload | CEM_SI | 13 | 14 | 15 | - | - | - | - | - |
CEM_LI | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | 9.5 | 10 | |
CEM_LE | 4.5 | 5 | - | - | - | - | - | - | |
Lmax/Lpeak | CEM_SI | 0.27 | 0.29 | 0.31 | - | - | - | - | - |
CEM_LI | 0.24 | 0.25 | 0.27 | 0.29 | 0.31 | 0.32 | 0.34 | 0.36 | |
CEM_LE | 0.35 | 0.38 | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anglani, G.; Tulliani, J.-M.; Antonaci, P. Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading. Materials 2020, 13, 1149. https://doi.org/10.3390/ma13051149
Anglani G, Tulliani J-M, Antonaci P. Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading. Materials. 2020; 13(5):1149. https://doi.org/10.3390/ma13051149
Chicago/Turabian StyleAnglani, Giovanni, Jean-Marc Tulliani, and Paola Antonaci. 2020. "Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading" Materials 13, no. 5: 1149. https://doi.org/10.3390/ma13051149
APA StyleAnglani, G., Tulliani, J.-M., & Antonaci, P. (2020). Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading. Materials, 13(5), 1149. https://doi.org/10.3390/ma13051149