Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. Coating Fabrication
2.3. Experimental Design
2.4. Characterizations
3. Results
3.1. Weight Loss
3.2. ICP Analysis
3.3. XPS Analysis
3.4. SEM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface Degradation of Dental Ceramics as a Function of Environmental pH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukiattrakoon, B.; Junpoom, P.; Hengtrakool, C. Vicker’s microhardness and energy dispersive x-ray analysis of fluorapatite-leucite and fluorapatite ceramics cyclically immersed in acidic agents. J. Oral. Sci. 2009, 51, 443–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukiattrakoon, B.; Hengtrakool, C.; Kedjarune-Leggat, U. Degradability of fluorapatite-leucite ceramics in naturally acidic agents. Dent. Mater. J. 2010, 29, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Ccahuana, V.Z.S.; ÖZcan, M.; Mesquita, A.M.M.; Nishioka, R.S.; Kimpara, E.T.; Bottino, M.A. Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride. J. Appl. Oral Sci. 2010, 18, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kukiattrakoon, B.; Hengtrakool, C.; Kedjarune-Leggat, U. The effect of acidic agents on surface ion leaching and surface characteristics of dental porcelains. J. Prosthet. Dent. 2010, 103, 148–162. [Google Scholar] [CrossRef]
- Milleding, P.; Haraldsson, C.; Karlsson, S. Ion leaching from dental ceramics during static in vitro corrosion testing. J. Biomed. Mater. Res. 2002, 61, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Milleding, P.; Karlsson, S.; Nyborg, L. On the surface elemental composition of non-corroded and corroded dental ceramic materials in vitro. J. Mater. Sci. Mater. Med. 2003, 14, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Milleding, P.; Wennerberg, A.; Alaeddin, S.; Karlsson, S.; Simon, E. Surface corrosion of dental ceramics in vitro. Biomaterials 1999, 20, 733–746. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Rose, W.F.J.; Barrett, A.A.; Oliveira, E.R.; Yang, M.C.; Clark, A.E.; Anusavice, K.J. Three years in vivo wear: Core-ceramic, veneers, and enamel antagonists. Dent. Mater. J. 2012, 28, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Upshaw, J.F.; Ren, F.; Hsu, S.-M.; Dieng, F.Y.; Neal, D.; Clark, A.E. Novel Testing for Corrosion of Glass-Ceramics for Dental Applications. J. Dent. Res. 2018, 97, 296–302. [Google Scholar] [CrossRef]
- Lussi, A.; Megert, B.; Peter Shellis, R.; Wang, X. Analysis of the erosive effect of different dietary substances and medications. Br. J. Nutr. 2012, 107, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlynn, W. The Importance of Food pH in Commercial Canning Operations 2016. pp. 118-1–118-8. Available online: https://extension.okstate.edu/fact-sheets/the-importance-of-food-ph-in-commercial-canning-operations.html (accessed on 7 March 2020).
- Ajaal, T.T.; Ebdewi, E.A.A. Degradation Effect on the Flexural Strength & Micro-Hardness of IPS e-max Laminated Ceramics. Int. J. Eng. Innov. 2019, 8, 172–180. [Google Scholar]
- Mohsen, C. Corrosion effect on the flexural strength & micro-hardness of ips e-max ceramics. Open J. Stomatol. 2011, 1, 29–35. [Google Scholar]
- Reddy, N.R.; Padmaja, B.I.; Devi, G.; Priya, G.K.; Bindu, G.H.; Babu, N.S. The effect of commonly consumed beverages on colour stability and surface roughness of two metal ceramic materials: An in-vitro study. J. NTR Univ. Health Sci. 2018, 7, 31–38. [Google Scholar] [CrossRef]
- Thaworanunta, S.; Sriprasert, N.; Tarawatcharasart, P.; Subtanarat, A.; Cholsiri, C.; Ratanasaovaphak, K.; Thanatawinwongsa, N.; Phrajunpanich, P. Exposure to coffee and bleaching altered surface treated lithium disilicate porcelain color and surface roughness. M. Dent. J. 2019, 39, 267–276. [Google Scholar]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implants Res. 2006, 17, 68–81. [Google Scholar] [CrossRef]
- Go, H.; Park, H.; Lee, J.; Seo, H.; Lee, S. Effect of various polishing burs on surface roughness and bacterial adhesion in pediatric zirconia crowns. Dent. Mater. J. 2019, 38, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Tulyaganov, D.U.; Agathopoulos, S.; Kansal, I.; Valério, P.; Ribeiro, M.J.; Ferreira, J.M.F. Synthesis and properties of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. Ceram. Int. 2009, 35, 3013–3019. [Google Scholar] [CrossRef]
- Monmaturapoj, N.; Lawita, P.; Thepsuwan, W. Characterisation and Properties of Lithium Disilicate Glass Ceramics in the SiO2-Li2O-K2O-Al2O3 System for Dental Applications. Adv. Mater. Sci. Eng. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.M.; Clark, D.E.; Hench, L.L. Glass-ceramic dental restoration. U.S. Patent 4,189,325, 19 February 1980. [Google Scholar]
- Wu, J.M.; Cannon, W.R.; Panzera, C. Castable glass-ceramic composition useful as dental restorative. U.S. Patent 4,515,634, 7 May 1985. [Google Scholar]
- Kasuga, T.; Kimata, T.; Obata, A. Preparation of a Calcium Titanium Phosphate Glass–Ceramic with Improved Chemical Durability. J. Am. Ceram. Soc. 2009, 92, 1709–1712. [Google Scholar] [CrossRef]
- Wang, X.; Cai, S.; Liu, T.; Ren, M.; Huang, K.; Zhang, R.; Zhao, H. Fabrication and corrosion resistance of calcium phosphate glass-ceramic coated Mg alloy via a PEG assisted sol–gel method. Ceram. Int. 2014, 40, 3389–3398. [Google Scholar] [CrossRef]
- Topateş, G.; Tarhan, B.; Tarhan, M. Chemical durability of zircon containing glass-ceramic glazes. Ceram. Int. 2017, 43, 12333–12337. [Google Scholar] [CrossRef]
- Rau, J.V.; Antoniac, I.; Fosca, M.; De Bonis, A.; Blajan, A.I.; Cotrut, C.; Graziani, V.; Curcio, M.; Cricenti, A.; Niculescu, M.; et al. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications. Mater. Sci. Eng. C 2016, 64, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Elshahawy, W. Cytotoxicity of Dental Ceramics Used for Manufacturing Dental Fixed Prosthesis: A Systematic Review. M. J. Dent. 2016, 1, 1–10. [Google Scholar]
- Elshahawy, W.; Shohieb, F.; Yehia, H.; Etman, W.; Watanabe, I.; Kramer, P. Cytotoxic effect of elements released clinically from gold and CAD-CAM fabricated ceramic crowns. Tanta Dent. J. 2014, 11, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Elshahawy, W.M.; Watanabe, I.; Kramer, P. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials. Dent. Mater. 2009, 25, 1551–1555. [Google Scholar] [CrossRef]
- Atay, A.; Gürdal, I.; Bozok Çetıntas, V.; Üşümez, A.; Cal, E. Effects of New Generation All-Ceramic and Provisional Materials on Fibroblast Cells. J. Prosthodont. 2019, 28, e383–e394. [Google Scholar] [CrossRef] [Green Version]
- González, P.; Serra, J.; Liste, S.; Chiussi, S.; León, B.; Pérez-Amor, M.; Martínez-Fernández, J.; de Arellano-López, A.R.; Varela-Feria, F.M. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 2003, 24, 4827–4832. [Google Scholar] [CrossRef]
- Filardo, G.; Kon, E.; Tampieri, A.; Cabezas-Rodríguez, R.; Di Martino, A.; Fini, M.; Giavaresi, G.; Lelli, M.; Martínez-Fernández, J.; Martini, L.; et al. New Bio-Ceramization Processes Applied to Vegetable Hierarchical Structures for Bone Regeneration: An Experimental Model in Sheep. Tissue Eng. Part A 2014, 20, 763–773. [Google Scholar]
- Gryshkov, O.; Klyui, N.I.; Temchenko, V.P.; Kyselov, V.S.; Chatterjee, A.; Belyaev, A.E.; Lauterboeck, L.; Iarmolenko, D.; Glasmacher, B. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater. Sci. Eng. C 2016, 68, 143–152. [Google Scholar] [CrossRef]
- Brennan, J.J.; Prewo, K.M. Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 1982, 17, 2371–2383. [Google Scholar] [CrossRef]
- Mahmud, N.N.; Vajpai, S.K.; Ameyama, K. Fabrication of Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and High Toughness by Spark Plasma Sintering of Mechanically Milled Powders. Mater. Trans. 2014, 55, 1827–1833. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, H.; Kawakubo, T.; Goto, A.; Kaneko, T. Corrosion Behavior of Silicon Carbide in 290 °C Water. J. Am. Ceram. Soc. 1989, 72, 2049–2053. [Google Scholar] [CrossRef]
- Barringer, E.; Faiztompkins, Z.; Feinroth, H.; Allen, T.; Lance, M.; Meyer, H.; Walker, L.; Lara-Curzio, E. Corrosion of CVD Silicon Carbide in 500 °C Supercritical Water. J. Am. Ceram. Soc. 2007, 90, 315–318. [Google Scholar] [CrossRef]
- Li, K.Z.; Lan, F.T.; Li, H.J.; Shen, X.T.; He, Y.G. Oxidation protection of carbon/carbon composites with SiC/indialite coating for intermediate temperatures. J. Eur. Ceram. Soc. 2009, 29, 1803–1807. [Google Scholar]
- Kim, D.; Lee, H.G.; Park, J.Y.; Park, J.Y.; Kim, W.J. Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment. Corros. Sci. 2015, 98, 304–309. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Valera-Feria, F.M.; Singh, M. High Temperature Compressive Mechanical Behavior of Biomorphic Silicon Carbide Ceramics. Scr. Mater. 2000, 43, 813–818. [Google Scholar] [CrossRef]
- Ramírez-Rico, J.; Singh, M.; Zhu, D.; Martínez-Fernández, J. High-temperature thermal conductivity of biomorphic SiC/Si ceramics. J. Mater. Sci. 2017, 52, 10038–10046. [Google Scholar] [CrossRef]
- De’rand, T. Reinforcement of porcelain crowns with silicon carbide fibers. J. Prosthet. Dent. 1980, 43, 40–41. [Google Scholar] [CrossRef]
- Niihara, K. New design concept of structural ceramics—Ceramic nanocomposites. J. Ceram. Soc. Jpn. 1991, 99, 974–982. [Google Scholar] [CrossRef] [Green Version]
- Naji, A.; Harmand, M.-F. Cytocompatibility of two coating materials, amorphous alumina and silicon carbide, using human differentiated cell cultures. Biomaterials 1991, 12, 690–694. [Google Scholar] [CrossRef]
- Bonaventura, G.; Iemmolo, R.; La Cognata, V.; Zimbone, M.; La Via, F.; Fragalà, M.E.; Barcellona, M.L.; Pellitteri, R.; Cavallaro, S. Biocompatibility between Silicon or Silicon Carbide surface and Neural Stem Cells. Sci. Rep. 2019, 9, 11540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J.M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902. [Google Scholar] [CrossRef]
- Chen, F.; Li, G.; Zhao, E.R.; Li, J.; Hableel, G.; Lemaster, J.E.; Bai, Y.; Sen, G.L.; Jokerst, J.V. Cellular toxicity of silicon carbide nanomaterials as a function of morphology. Biomaterials 2018, 179, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Mzyk, A.; Major, R.; Lackner, J.M.; Bruckert, F.; Major, B. Cytotoxicity control of SiC nanoparticles introduced into polyelectrolyte multilayer films. RSC Adv. 2014, 4, 31948–31954. [Google Scholar] [CrossRef]
- Chen, Z.; Fares, C.; Elhassani, R.; Ren, F.; Kim, M.; Hsu, S.-M.; Clark, A.E.; Esquivel-Upshaw, J.F. Demonstration of SiO2/SiC-based protective coating for dental ceramic prostheses. J. Am. Ceram. Soc. 2019, 102, 6591–6599. [Google Scholar] [CrossRef]
- Buciumeanu, M.; Queiroz, J.R.C.; Martinelli, A.E.; Silva, F.S.; Henriques, B. The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribol. Int. 2017, 116, 192–198. [Google Scholar] [CrossRef]
- Gönülol, N.; Yılmaz, F. The effects of finishing and polishing techniques on surface roughness and color stability of nanocomposites. J. Dent. 2012, 40, e64–e70. [Google Scholar] [CrossRef]
- Maraghechi, H.; Rajabipour, F.; Pantano, C.G.; Burgos, W.D. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cement Concrete. Res. 2016, 87, 1–13. [Google Scholar] [CrossRef] [Green Version]
- IPS e.max Zirpress Scientific Documentation; Ivoclar Vivadent Download Center of Scientific Documentation. Available online: https://www.ivoclarvivadent.com/en/download-center/scientific-documentations/#I (accessed on 7 March 2020).
- Bühler-Zemp, P. IPS Empress Esthetic – Scientific Documentation 2004; Ivoclar Vivadent AG: Schaan, Liechtenstein, 2004. [Google Scholar]
- Gayer, K.H.; Thompson, L.C.; Zajicek, O.T. The Solubility of Aluminum hydroxide in acidic and Basic Media at 25 °C. Can. J. Chem. 1958, 36, 1268–1271. [Google Scholar] [CrossRef]
- Andrews, A.; Herrmann, M.; Sephton, M.; Machio, C.; Michaelis, A. Electrochemical corrosion of solid and liquid phase sintered silicon carbide in acidic and alkaline environments. J. Eur. Ceram. Soc. 2007, 27, 2127–2135. [Google Scholar] [CrossRef]
- International Organization for Standardization No. 6872. Dentistry-Ceramic Materials; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
Composition | SiO2 | Al2O3 | Na2O | K2O | CaO | ZnO | ZrO2 | P2O5 | F | Other Oxides | Pigments |
---|---|---|---|---|---|---|---|---|---|---|---|
Wt % | 57.0–62.0 | 12.0–16.0 | 7.0–10.0 | 6.0–8.0 | 2.0–4.0 | 1.5–2.5 | 1.0–2.0 | 0.5–1.0 | 0–6.0 | 0.2–0.9 | |
Atomic % | 58.6–51.6 | 14.5–15.7 | 13.9–16.1 | 7.8–8.5 | 2.2–3.5 | 0.7–1.0 | 0.4–0.7 | 1.6–2.6 |
Atomic Ratio | Si | Al | Na | K | Ca | Mg | Zn | Zr | N | P | F | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ref | 53.7 | 11.5 | 7.6 | 5.9 | 3.5 | 3.3 | 1.3 | 0.6 | 9.9 | 1.3 | 1.4 | |
OpH10 | 59.8 | 15.8 | 9.5 | 12.0 | 2.9 | |||||||
NpH2 | 76.9 | 1.1 | 9.9 | 8.8 | 3.3 |
Composition(wt.%) | SiO2 | Al2O3 | Na2O | K2O | CaO | ZnO | ZrO2 | P2O5 | F | Li2O | Other Oxides | Pigments |
---|---|---|---|---|---|---|---|---|---|---|---|---|
This study | 57.0–62.0 | 12.0–16.0 | 7.0–10.0 | 6.0–8.0 | 2.0–4.0 | 1.5–2.5 | 1.0–2.0 | 0.5–1.0 | 0–6.0 | 0.2–0.9 | ||
Esquivel-Upshaw et al. 2013 | 60.0–72.0 | 2.0–8.0 | 10.0–23.0 | 1.0–10.5 | 8.5–20.0 | 0.5–6.0 | 0.1–1.0 | 1.0–5.0 | 5.0–10.0 | 0.0–0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-M.; Ren, F.; Chen, Z.; Kim, M.; Fares, C.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications. Materials 2020, 13, 1215. https://doi.org/10.3390/ma13051215
Hsu S-M, Ren F, Chen Z, Kim M, Fares C, Clark AE, Neal D, Esquivel-Upshaw JF. Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications. Materials. 2020; 13(5):1215. https://doi.org/10.3390/ma13051215
Chicago/Turabian StyleHsu, Shu-Min, Fan Ren, Zhiting Chen, Mijin Kim, Chaker Fares, Arthur E. Clark, Dan Neal, and Josephine F. Esquivel-Upshaw. 2020. "Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications" Materials 13, no. 5: 1215. https://doi.org/10.3390/ma13051215
APA StyleHsu, S. -M., Ren, F., Chen, Z., Kim, M., Fares, C., Clark, A. E., Neal, D., & Esquivel-Upshaw, J. F. (2020). Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications. Materials, 13(5), 1215. https://doi.org/10.3390/ma13051215