Synthesis of High Surface Area α-KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology, Structure and Composition
3.2. Electrochemical Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R. Theoretical vs. practical energy: A plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 2019, 9, 1803170–1803187. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells and supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed]
- Julien, C.M.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries: Science and Technology; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Jiao, F.; Bruce, P.G. Mesoporous crystalline β-MnO2–a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 2007, 19, 657–660. [Google Scholar] [CrossRef]
- GlobTeck, Inc. Lithium Manganese Dioxide Battery Li-MnO2. Available online: https://fr.globtek.com/lithium-manganese-dioxide-battery-li-mno2-batteries/ (accessed on 12 June 2019).
- Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Shaijumon, M.M.; Gowda, S.R.; Ajayan, P.M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A. Nanostructured MnO2 as electrodes materials for energy storage. Nanomaterials 2017, 7, 396. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, S.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 2018, 12, 284–309. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Jia, H.; Kloepsch, R.; Liu, H.; Beltrop, K.; Li, J. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries. J. Power Sources 2015, 293, 306–311. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Lou, X.W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2015, 54, 12886–12890. [Google Scholar] [CrossRef]
- Débart, A.; Peterson, A.J.; Bao, J.; Bruce, P.G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4521–4524. [Google Scholar] [CrossRef] [PubMed]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, Y.; Min, K.; Kim, J. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors. Electrochim. Acta 2013, 113, 322–331. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, J.; Han, Q.; Zheng, Z.; Yang, Y.; Wang, X. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 2009, 9, 4356–4361. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274. [Google Scholar] [CrossRef] [PubMed]
- Housel, L.M.; Wang, L.; Abraham, A.; Huang, J.; Renderos, G.D.; Quilty, C.D.; Brady, A.B.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Investigation of α-MnO2 tunneled structures as model cation hosts for energy storage. Acc. Chem. Res. 2018, 16, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Vicat, J.; Fanchon, E.; Strobel, P.; Tran-Qui, D. The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallogr. B 1986, 42, 162–167. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, C.; Zhang, P.; Guo, Z.; Chen, Z.; Lid, S.; Liu, H. K0.25Mn2O4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries. RSC Adv. 2012, 2, 1643–1649. [Google Scholar] [CrossRef]
- Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J.P. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. Growth mechanisms in aqueous medium. Chem. Mater. 2007, 19, 5410–5417. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Chen, L.; Li, G. One-dimensional α-MnO2: Trapping chemistry of tunnel structures, structure stability, and magnetic transitions. J. Solid State Chem. 2007, 180, 2896–2904. [Google Scholar] [CrossRef]
- Nayak, P.K.; Munichandraiah, N. Rapid sonochemical synthesis of mesoporous MnO2 for supercapacitor applications. Mater. Sci. Eng. B 2012, 177, 849–854. [Google Scholar] [CrossRef]
- Devaraj, S.; Munichandraiah, N. Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J. Electrochem. Soc. 2007, 154, A80–A88. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Elsherif, S.A.; Abdel-Ghany, N.A.; Hashem, A.M. Facile, cost-effective and eco-friendly green synthesis method of MnO2 as storage electrode materials for supercapacitors. J. Energy Storage 2019, 21, 156–162. [Google Scholar] [CrossRef]
- Zheng, H.; Feng, C.; Kim, S.-J.; Yin, S.; Wu, H.; Wang, S.; Li, S. Synthesis and electrochemical properties of KMn8O16 nanorods for lithium ion batteries. Electrochim. Acta 2013, 88, 225–230. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Hashem, A.M.; Kaus, M.; Knapp, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Electrochemical performance of nanosized MnO2 synthesized by redox route using biological reducing agents. J. Alloys Compd. 2018, 746, 227–237. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Nuthong, W.; Pimsen, R.; Thongsom, M. Green synthesis of silver nanoparticles using Barringtonia acutangula (L.) Gaertn leaf extract as reducing agent and their antibacterial and antioxidant activity. J. Appl. Sci. 2017, 16, 75–81. [Google Scholar] [CrossRef]
- Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciose Hassk pods assisted by microwave irradiation. J. Adv. Res. 2016, 7, 961–969. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in brassica vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef]
- Hashem, A.M.; Abuzeid, H.; Kaus, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel. Electrochim. Acta 2018, 262, 74–81. [Google Scholar] [CrossRef]
- Kochhar, M.; Kochhar, A. Proximate composition, available carbohydrates, dietary fibre and anti-nutritional factors of broccoli (Brassica oleracea L. Var. Italica Plenck) leaf and floret powder. Biosci. Discov. 2014, 5, 45–49. [Google Scholar]
- Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical composition and physicochemical properties of broccoli flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, F.; Tomas-Barberan, F.; Garcia-Viguera, C. Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J. Agric. Food Chem. 2003, 51, 3029–3034. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Mohapatra, D. Bioactive compounds in broccoli: Extraction and processing. In Vegetable Processing and Bioactive Compounds; Kadam, D.M., Sharma, M., Kaur, D., Eds.; Studium Press India Ltd.: New Delhi, India, 2017. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Gao, T.; Norby, P. Frame stability of tunnel-structured cryptomelane nanofibers: The role of tunnel cations. Eur. J. Inorg. Chem. 2013, 2013, 4948–4957. [Google Scholar] [CrossRef]
- Galindo, H.M.; Carvajal, Y.; Njagi, E.; Ristau, R.A.; Suib, S.L. Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese oxide K-OMS-2. Langmuir 2010, 26, 13677–13683. [Google Scholar] [CrossRef]
- Poyraz, A.S.; Huang, J.; Pelliccione, C.J.; Tong, X.; Cheng, S.; Wu, L.; Zhu, Y.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Synthesis of cryptomelane type α-MnO2 (KxMn8O16) cathode materials with tunable K+ content: The role of tunnel cation concentration on electrochemistry. J. Mater. Chem. A 2017, 5, 16914–16928. [Google Scholar] [CrossRef]
- Gaillot, A.-C.; Flot, D.; Drits, V.A.; Manceau, A.; Burghammer, M.; Lanson, B. Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. Two-layer polytype from 800 °C experiment. Chem. Mater. 2003, 15, 4666–4678. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 2003, 9, 300–306. [Google Scholar] [CrossRef]
- Liu, J.; Son, Y.C.; Cai, J.; Shen, X.; Suib, S.L.; Aindow, M. Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem. Mater. 2004, 16, 276–285. [Google Scholar] [CrossRef]
- McKenzie, R.M. The synthesis of birnessite, cryptomelane and some other oxides and hydroxides of manganese. Miner. Mag. 1971, 38, 493–502. [Google Scholar] [CrossRef]
- Davoglio, R.A.; Cabello, G.; Marco, J.F.; Biaggio, S.R. Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochim. Acta 2018, 261, 428–435. [Google Scholar] [CrossRef]
- Villegas, J.C.; Garces, L.J.; Gomez, S.; Durand, J.P.; Suib, S.L. Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions. Chem. Mater. 2005, 17, 1910–1918. [Google Scholar] [CrossRef]
- Kumar, V.G.; Kim, K.B. Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn(3)acetate. Ultrason. Sonochem. 2006, 13, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Poyraz, A.S.; Kuo, C.-H.; Biswas, S.; King’ondu, C.K.; Suib, S.L. A general approach to crystalline and monomodal pore size mesoporous materials. Nat. Commun. 2013, 4, 2952. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Yu, W.; Tan, G.; Ren, H.; Liu, C. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance. J. Electroanal. Chem. 2019, 839, 25–31. [Google Scholar] [CrossRef]
- Li, L.; Nan, C.; Lu, J.; Peng, Q.; Li, Y. α-MnO2 nanotubes: High surface area and enhanced lithium battery properties. Chem. Commun. 2012, 48, 6945–6947. [Google Scholar] [CrossRef]
- Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406–4417. [Google Scholar] [CrossRef]
- Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P.M.; Wei, B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar] [CrossRef]
- Chen, H.; Dong, X.; Shi, J.; Zhao, J.; Hua, Z.; Gao, J.; Ruan, M.; Yan, D. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. J. Mater. Chem. 2007, 17, 855–860. [Google Scholar] [CrossRef]
- Li, B.; Rong, G.; Xie, Y.; Huang, L.; Feng, C. Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 2006, 45, 6404–6410. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Zhang, H.; Zhang, D.; Sun, X.; Ma, Y. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Islam, S.; Gim, J.; Song, J.; Kim, S.; Pham, D.T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 2016, 650, 64–68. [Google Scholar] [CrossRef]
- Yuan, Y.; Nie, A.; Odegard, G.M.; Xu, R.; Zhou, D.; Santhanagopalan, S.; He, K.; Asayesh-Ardakani, H.; Meng, D.D.; Klie, R.F.; et al. Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano Lett. 2015, 15, 2998–3007. [Google Scholar] [CrossRef] [PubMed]
- Ohzuku, T.; Tari, I.; Hirai, T. Thermal gravimetric studies of manganese dioxide. Electrochim. Acta 1982, 27, 1049–1053. [Google Scholar] [CrossRef]
- Muraoka, Y.; Chiba, H.; Atou, T.; Kikuchi, M.; Hiraga, K.; Syono, Y.; Sugiyama, S.; Yamamoto, S.; Grenier, J.C. Preparation of α-MnO2 with an open tunnel. J. Solid State Chem. 1999, 144, 136–142. [Google Scholar] [CrossRef]
- Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mater. 1995, 7, 148–153. [Google Scholar] [CrossRef]
- Ranjusha, R.; Sonia, T.S.; Roshny, S.; Lakshmi, V.; Kalluri, S.; Kim, T.N.; Nair, S.V.; Balakrishnan, A. Synthesis, characterization and rate capability performance of the micro-porous MnO2 nanowires as cathode material in lithium batteries. Mater. Res. Bull. 2015, 70, 1–6. [Google Scholar]
- Sarasketa-Zabala, E.; Aguesse, F.; Villareal, I.; Rodriguez-Martinez, L.M.; Lopez, C.M.; Kubiak, P. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 2015, 119, 896–906. [Google Scholar] [CrossRef]
- Tompsett, D.A.; Islam, M.S. Electrochemistry of hollandite a-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 2013, 25, 2515–2526. [Google Scholar] [CrossRef]
- Esmanski, A.; Ozin, G.A. Silicon inverse-opal-based microporous materials as negative electrodes for lithium ion batteries. Adv. Funct. Mater. 2009, 12, 1999–2010. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Deng, M.; Ding, G.; Chen, S.; Xu, F. Manganese dioxide based ternary nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen peroxide. Electrochim. Acta 2013, 114, 416–423. [Google Scholar] [CrossRef]
- Johnson, C.S.; Dees, D.W.; Mansuetto, M.F.; Thackeray, M.M.; Vissers, D.R.; Argyriou, D.; Loong, C.K.; Christensen, L.J. Structural and electrochemical studies of α-manganese dioxide (α-MnO2). J. Power Sources 1997, 68, 570–577. [Google Scholar] [CrossRef]
- Tseng, L.-T.; Lu, Y.; Fan, H.M.; Wang, Y.; Luo, X.; Liu, T.; Munroe, P.; Li, S.; Yi, J. Magnetic properties in α-MnO2 doped with alkaline elements. Sci. Rep. 2015, 5, 9094. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, L.; Zhao, Y.; Wang, F. Hydrothermal synthesis and electrochemical characterization of α-MnO2 nanorods as cathode material for lithium batteries. Int. J. Electrochem. Sci. 2008, 3, 67–74. [Google Scholar]
- Dai, J.; Li, S.F.Y.; Siow, K.S.; Gao, Z. Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries. Electrochim. Acta 2000, 45, 2211–2217. [Google Scholar] [CrossRef]
- Hill, L.I.; Verbaere, A.; Guyomard, D. MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: Characterization, morphology, and lithium insertion behavior. J. Power Sources 2003, 119–121, 226–231. [Google Scholar] [CrossRef]
- Johnson, C.S. Development and utility of manganese oxides as cathodes in lithium batteries. J. Power Sources 2007, 165, 559–565. [Google Scholar] [CrossRef]
- Kim, K.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A.; Pol, V.G. Basic medium heterogeneous solution synthesis of α-MnO2 nanoflakes as an anode or cathode in half cell configuration (vs. lithium) of Li-ion batteries. Nanomaterials 2018, 8, 608. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, W.J.; Mauger, A.; Gendron, F.; Julien, C.M.; Qilu, R. Minimization of the cation mixing in Li1+x(NMC)1-xO2 as cathode material. J. Power Sources 2010, 195, 1292–1301. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kawasaki, N.; Kobayashi, Y.; Shono, K.; Mita, Y.; Miyashiro, H. A method of separating the capacities of layer and spinel compounds in blended cathode. J. Power Sources 2014, 245, 1–6. [Google Scholar] [CrossRef]
- Hashem, A.M.; Abdel-Ghany, A.E.; Scheuermann, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Doped nanoscale NMC333 as cathode materials for Li-ion batteries. Materials 2019, 12, 2899. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N.; Sasaki, T.; Oshitari, S.; Komaba, S. Characterization and lithium insertion characteristics of hollandite-type Ky(Mn1-xMx)O2 for rechargeable lithium battery electrodes. J. New Mater. Electrochem. Syst. 2006, 9, 175–180. [Google Scholar]
- Yuan, Y.; Zhan, C.; He, K.; Chen, H.; Yao, W.; Shari-Asl, S.; Song, B.; Yang, Z.; Nie, A.; Luo, X.; et al. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nat. Commun. 2016, 7, 13374. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Dineshkumar, P.; Rameshbabu, R.; Sen, A. Morphological analysis of ultra fine α-MnO2 nanowires under different reaction conditions. Mater. Lett. 2015, 158, 309–312. [Google Scholar] [CrossRef]
- Cheng, G.; Yu, L.; Lan, B.; Sun, M.; Lin, T.; Fu, Z.; Su, X.; Qiu, M.; Guo, C.; Xu, B. Controlled synthesis of α-MnO2 nanowires and their catalytic performance for toluene combustion. Mater. Res. Bull. 2016, 75, 17–24. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Zeng, R.; Du, G.; Sun, Z.; Zheng, R.; Ringer, S.P.; Dou, S.X. Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci. Rep. 2015, 5, 8987. [Google Scholar] [CrossRef]
- Feng, L.; Xuan, Z.; Zhao, H.; Bai, Y.; Guo, J.; Su, C.; Chen, X. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res. Lett. 2014, 9, 290. [Google Scholar] [CrossRef]
- Xiao, T.D.; Bokhimi, X.; Benaissa, M.; Perez, R.; Strutt, P.R.; Yacaman, M.J. Microstructural characteristics of chemically processed manganese oxide nanofibers. Acta Mater. 1997, 45, 1685–1693. [Google Scholar] [CrossRef]
- Ahn, D.; Yoo, I.; Koo, Y.-M.; Shin, N.; Kim, J.; Shin, T.J. Effects of cobalt-intercalation and polyaniline coating on electrochemical performance of layered manganese oxides. J. Mater. Chem. 2011, 21, 5282–5289. [Google Scholar] [CrossRef]
- Bach, S.; Pereira-Ramos, J.P.; Baffier, N. A new MnO2 tunnel related phase as host lattice for Li intercalation. Solid State Ion. 1995, 80, 151–158. [Google Scholar] [CrossRef]
- Huang, H.; Sithambaram, S.; Chen, C.-H.; Kithongo, C.K.; Xu, L.; Iyer, A.; Garces, H.F.; Suib, S.L. Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies. Chem. Mater. 2010, 22, 3664–3669. [Google Scholar] [CrossRef]
- Hu, B.; Chen, C.-H.; Frueh, S.J.; Jin, L.; Joesten, R.; Suib, S.L. Removal of aqueous phenol by adsorption and oxidation with doped hydrophobic cryptomelane-type manganese oxide (K−OMS-2) nanofibers. J. Phys. Chem. C 2010, 114, 9835–9844. [Google Scholar] [CrossRef]
- Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J.S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79. [Google Scholar] [CrossRef]
- Cheng, F.-Y.; Zhao, J.-Z.; Song, W.; Li, C.-S.; Ma, H.; Chen, J.; Shen, P.-W. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45, 2038–2044. [Google Scholar] [CrossRef]
- Johnson, C.S.; Thackeray, M.M. Ammonia- and lithia-doped manganese dioxide for 3 V lithium batteries. J. Power Sources 2001, 97–98, 437–442. [Google Scholar] [CrossRef]
- Kijima, N.; Takahashi, Y.; Akimoto, J.; Awaka, J. Lithium ion insertion and extraction reactions with hollandite-type manganese dioxide free from any stabilizing cations in its tunnel cavity. J. Solid State Chem. 2005, 178, 2741–2750. [Google Scholar] [CrossRef]
- Rossouw, M.H.; Liles, D.C.; Thackeray, M.M. Alpha manganese dioxide for lithium batteries: A structural and electrochemical study. Mater. Res. Bull. 1992, 27, 221–230. [Google Scholar] [CrossRef]
- Ohzuku, T.; Kitagawa, M.; Sawai, K.; Hirai, T. Topotactic reduction of alpha-manganese (di)oxide in nonaqueous lithium cells. J. Electrochem. Soc. 1991, 138, 360–365. [Google Scholar] [CrossRef]
- Kadoma, Y.; Akahira, T.; Fukuda, T.; Ui, K.; Kumagai, N. Synthesis and electrochemical properties of nanofiber hollandite-type manganese oxides using hydrothermal method. Funct. Mater. Lett. 2012, 5, 1250004. [Google Scholar] [CrossRef]
- Poyraz, A.S.; Huang, J.; Cheng, S.; Bock, D.C.; Wu, L.; Zhu, Y.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Effective recycling of manganese oxide cathodes for lithium based batteries. Green Chem. 2016, 18, 3414–3421. [Google Scholar] [CrossRef]
- Sugantha, M.; Ramakrishnan, P.A.; Hermann, A.M.; Warmsingh, C.P.; Ginley, D.S. Nanostructured MnO2 for Li batteries. Int. J. Hydrog. Energy 2003, 28, 597–600. [Google Scholar] [CrossRef]
- Hashem, A.M.; Abdel-Ghany, A.E.; El-Tawil, R.; Bhaskar, A.; Hunzinger, B.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Urchin-like α-MnO2 formed by nanoneedles for high-performance lithium batteries. Ionics 2016, 22, 2263–2271. [Google Scholar] [CrossRef]
Composition | Morphology (Synthesis) a | Specific Capacity | Current Density | |
---|---|---|---|---|
(mAh g−1) | (mA g−1) | Ref. | ||
KyMnO2 | NRs (H) | 189 | 50 | [68] |
K0.06MnO2 | NNs (R) | 236 | 10 | [27] |
K0.11MnO2 | NNs (H) | 198 | 10 | [27] |
K0.14MnO2 | NNs (H) | 160 | 50 | [93] |
K0.14Mn0.9Co0.1O2 | NNs (H) | 200 | 50 | [93] |
K0.25MnO2 | NWs (H) | 143 | 100 | [77] |
K0.125MnO2 | NRs (Ox) | 160 | 50 | [26] |
K0.84Mn8O16·0.25H2O | NWs (Rc) | 120 | 50 | [94] |
KyMnO2 | NRs (R) | 183 | 10 | [95] |
K0.04MnO2 | NNs (R) | 230 | 30 | [96] |
K0.32Mn8O16 | NFs (H) | 200 | 50 | [39] |
K0.75Mn8O16 | NFs (H) | 165 | 50 | [39] |
K0.25Mn8O16 | NKs (R) | 260 | 50 | [67] |
K0.125MnO2 | NFs (H) | 190 | 100 | [20] |
K0.03MnO2 | NNs (R) | 210 | 30 | this work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, A.M.; Abuzeid, H.M.; Winter, M.; Li, J.; Julien, C.M. Synthesis of High Surface Area α-KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery. Materials 2020, 13, 1269. https://doi.org/10.3390/ma13061269
Hashem AM, Abuzeid HM, Winter M, Li J, Julien CM. Synthesis of High Surface Area α-KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery. Materials. 2020; 13(6):1269. https://doi.org/10.3390/ma13061269
Chicago/Turabian StyleHashem, Ahmed M., Hanaa M. Abuzeid, Martin Winter, Jie Li, and Christian M. Julien. 2020. "Synthesis of High Surface Area α-KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery" Materials 13, no. 6: 1269. https://doi.org/10.3390/ma13061269
APA StyleHashem, A. M., Abuzeid, H. M., Winter, M., Li, J., & Julien, C. M. (2020). Synthesis of High Surface Area α-KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery. Materials, 13(6), 1269. https://doi.org/10.3390/ma13061269