Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations
Abstract
:1. Introduction
2. Theoretical Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Stability
3.3. Mechanical and Anisotropy Properties
3.4. Electronic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, Z.Y.; Han, Z.; Liu, X.H.; Yu, X.H.; Wang, D.Y.; Tian, Y. Pnma-BN: Another Boron Nitride Polymorph with Interesting Physical Properties. Nanomaterials 2017, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, J.H.; Zhou, P.K.; Zhang, D.Y.; Yang, Y.T. A New Phase of GaN. J. Chem. 2016, 2016, 8612892. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.Y.; Zhang, W.Z.; Yun, S.N.; Xu, J.; Song, Y.X. III-Nitride Polymorphs: XN (X = Al, Ga, In) in the Pnma Phase. Chem. Eur. J. 2018, 24, 17280. [Google Scholar] [CrossRef] [PubMed]
- Louhibi-Fasla, S.; Achour, H.; Kefif, K.; Ghalem, Y. First-principles study of high-pressure phases of AlN. Phys. Procedia 2014, 55, 324. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hu, M.; Luo, K.; Cui, L.; Yu, D.; Zhao, Z.S.; He, J.L. Novel high-pressure phases of AlN: A first-principles study. Comput. Mater. Sci. 2016, 117, 496. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Du, Z. A first-principles study of the properties of four predicted novel phases of AlN. J. Phys. Chem. Solids 2017, 104, 68. [Google Scholar] [CrossRef]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Du, Z. Phase stability, mechanical and optoelectronic properties of two novel phases of AlN. Mod. Phys. Lett. B 2017, 31, 1750201. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, W.H.; Zeng, Q.F.; Chen, Q.C. Vibrational and dielectric properties of AlN: A first-principles study. Ceram. Int. 2016, 42, 18828. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Zhou, P.K.; Zhang, J.Q.; Yang, Y.T. Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature. Chin. J. Phys. 2017, 55, 400. [Google Scholar] [CrossRef]
- Xu, L.F.; Bu, W. Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds. Int. J. Mod. Phys. B 2017, 31, 1750167. [Google Scholar] [CrossRef]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Zhang, D.Y. First-principles study on phases of AlP. Solid State Commun. 2017, 267, 23. [Google Scholar] [CrossRef]
- Liu, C.; Ma, M.D.; Yuan, X.H.; Sun, H.; Ying, P.; Xu, B.; Zhao, Z.S.; He, J.L. Metastable phases, phase transformation and properties of AlAs based on first-principle study. Comput. Mater. Sci. 2017, 128, 337. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.K.; Ma, Y.C.; Wei, Q.; Zhang, D.Y. A first-principles investigation of the properties of two predicted novel structures of Sn3P4. Chin. J. Phys. 2018, 56, 886. [Google Scholar] [CrossRef]
- Li, X.Z.; Xing, M.J. Prediction of a novel carbon allotrope from first-principle calculations: A potential superhard material in monoclinic symmetry. Mater. Chem. Phys. 2020, 242, 122480. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, C.; Mizusekid, H.; Kawazoe, Y. New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes. Phys. Chem. Chem. Phys. 2018, 20, 7962. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chai, C.C.; Fan, Q.Y.; Song, Y.X.; Yang, Y.T. PBCF-graphene: A 2D sp2 hybridized honeycomb carbon allotrope with a direct band gap. ChemNanoMat 2020, 6, 139. [Google Scholar] [CrossRef] [Green Version]
- Xing, M.; Li, B.; Yu, Z.; Chen, Q. C2/m-carbon: Structural, mechanical, and electronic properties. J. Mater. Sci. 2015, 50, 7104. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, C.C.; Fan, Q.Y.; Song, Y.X.; Yang, Y.T. Two novel superhard carbon allotropes with honeycomb structures. J. Appl. Phys. 2019, 126, 145704. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wang, H.; Song, Y.X.; Zhang, W.; Yun, S.N. Five carbon allotropes from Squaroglitter structures. Comput. Mater. Sci. 2020, 178, 109634. [Google Scholar] [CrossRef]
- Cheng, Y.; Melnik, R.; Kawazoe, Y.; Wen, B. Three Dimensional Metallic Carbon from Distorting sp3-Bond. Cryst. Growth. Des. 2016, 16, 1360. [Google Scholar] [CrossRef]
- Xing, M.; Li, B.; Yu, Z.; Chen, Q. A Reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 2016, 9, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. Two novel silicon phases with direct band gaps. Phys. Chem. Chem. Phys. 2016, 18, 12905. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.G.; Chai, C.C.; Fan, Q.Y.; Liu, Y.Q.; Yang, Y.T. A Novel Silicon Allotrope in the Monoclinic Phase. Materials 2017, 10, 441. [Google Scholar]
- Fan, Q.Y.; Niu, R.; Zhang, W.Z.; Zhang, W.; Ding, Y.C.; Yun, S.N. t-Si64: A Novel Silicon Allotrope. ChemPhysChem 2019, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Shi, X.Z.; Clark, S.J.; Li, J.; Pickard, C.J.; Ouyang, T.; Zhang, C.X.; Tang, C.; Zhong, J.X. Complex Low Energy Tetrahedral Polymorphs of Group IV Elements from First Principles. Phys. Rev. Lett. 2018, 121, 175701. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Zhou, P.K.; Zhang, J.Q.; Yang, Y.T. Si96: A New Silicon Allotrope with Interesting Physical Properties. Materials 2016, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.Y.; Zhang, W.; Song, Y.; Zhang, W.; Yun, S. P63/mmc-Ge and their Si-Ge alloys with a mouldable direct band gap. Semicond. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Yang, R.L.; Zhang, W.; Yun, S.N. Elastic anisotropy and thermal conductivity of silicon allotropes. Results Phys. 2019, 15, 102580. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M.J. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Semiclassical origin of density functionals. Phys. Rev. 1964, 136, 864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; de Gironcoli, S.; dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Petrescu, M.I. Boron nitride theoretical hardness compared to carbon polymorphs. Diam. Relat. Mater. 2004, 13, 1848. [Google Scholar] [CrossRef]
- Grimsditch, M.; Zouboulis, E.S.; Polian, A. Elastic constants of boron nitride. J. Appl. Phys. 1994, 76, 832. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Q.; Yan, H.Y.; Zhang, M.G. A new superhard carbon allotrope: Tetragonal C64. J. Mater. Sci. 2017, 52, 2385–2391. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties. Materials 2016, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Wang, W.H.; Greer, A.L. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 2005, 85, 77. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Panda, K.B.; Ravi, K.S. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 2006, 35, 134–150. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput. Mater. Sci. 2014, 83, 27–34. [Google Scholar] [CrossRef]
- Qiao, L.P.; Jin, Z. Two B-C-O Compounds: Structural, Mechanical Anisotropy and Electronic Properties under Pressure. Materials 2017, 10, 1413. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.Y.; Duan, Z.X.; Song, Y.X.; Zhang, W.; Zhang, Q.D.; Yun, S.N. Electronic, Mechanical and Elastic Anisotropy Properties of X-Diamondyne (X = Si, Ge). Materials 2019, 12, 3589. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.Y.; Wang, P.; Yan, F.; Shi, C.L.; Tian, Y. Physical properties of B4N4-I and B4N4-II: First-principles study. Chin. Phys. B 2019, 28, 036101. [Google Scholar] [CrossRef]
- Fan, Q.; Chai, C.; Wei, Q.; Zhou, P.; Yang, Y. Two novel Ge phases and their Si-Ge alloys with excellent electronic and optical properties. Mater. Des. 2017, 132, 539–551. [Google Scholar] [CrossRef]
- Marmier, A.; Lethbridge, Z.A.D.; Walton, R.I.; Smith, C.W.; Parker, S.C.; Evans, K.E. Elam: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 2010, 181, 2102–2115. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wei, Q.; Chai, C.C.; Yan, H.Y.; Zhang, M.G.; Lin, Z.Z.; Zhang, Z.X.; Zhang, J.Q.; Zhang, D.Y. Structural, mechanical, and electronic properties of P3m1-BCN. J. Phys. Chem. Solids 2015, 79, 89–96. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Wong, K.Q.; Liu, Y.Q.; Yang, Y.T. Theoretical investigations of group IV alloys in the Lonsdaleite phase. J. Mater. Sci. 2018, 53, 2785–2801. [Google Scholar] [CrossRef]
Materials | a | V | C11 | C12 | C44 | B | G | B/G | E | v |
---|---|---|---|---|---|---|---|---|---|---|
BN | 4.438 | 87.416 | 700 | 85 | 209 | 290 | 244 | 1.189 | 572 | 0.171 |
AlN | 5.366 | 154.505 | 335 | 59 | 58 | 151 | 83 | 1.819 | 210 | 0.268 |
GaN | 5.584 | 174.088 | 238 | 61 | 58 | 120 | 69 | 1.739 | 174 | 0.259 |
InN | 6.237 | 242.570 | 173 | 55 | 36 | 95 | 44 | 2.159 | 114 | 0.299 |
c-BN | 3.622 | 47.517 | 779 | 165 | 446 | 370 | 384 | 0.964 | 856 | 0.115 |
3.620 a | 820 b | 190 | 480 | 400 |
Space Group | ρ | vs | vp | vm | ΘD | |
---|---|---|---|---|---|---|
BN | Pm−3n | 2.829 | 9288 | 14749 | 10222 | 1571 |
AlN | Pm−3n | 2.643 | 5604 | 9950 | 6235 | 793 |
GaN | Pm−3n | 4.793 | 3794 | 6651 | 4217 | 515 |
InN | Pm−3n | 5.291 | 2884 | 5389 | 3221 | 352 |
BN a | Pnma | 3.040 | 8642 | 14057 | 9537 | 1502 |
AlN b | Pnma | 2.828 | 5319 | 9508 | 5920 | 770 |
GaN b | Pnma | 5.114 | 3673 | 6633 | 4092 | 511 |
InN b | Pnma | 5.642 | 2595 | 5064 | 2907 | 325 |
AlN b | F−43m | 3.206 | 6169 | 10488 | 6837 | 927 |
GaN b | F−43m | 5.878 | 4226 | 7274 | 4690 | 613 |
InN b | F−43m | 6.496 | 2962 | 5493 | 3307 | 387 |
(100) (010) (001) Plane | (011) (101) (110) Plane | (111) Plane | |||||||
---|---|---|---|---|---|---|---|---|---|
Emax | Emin | Emax/Emin | Emax | Emin | Emax/Emin | Emax | Emin | Emax/Emin | |
BN | 681.86 | 539.60 | 1.26 | 681.86 | 504.72 | 1.35 | 539.60 | 539.60 | 1.00 |
AlN | 317.06 | 177.10 | 1.79 | 317.06 | 154.30 | 2.05 | 177.10 | 177.10 | 1.00 |
GaN | 213.69 | 161.49 | 1.32 | 213.69 | 149.40 | 1.43 | 161.49 | 161.49 | 1.00 |
InN | 145.78 | 105.53 | 1.38 | 145.78 | 96.69 | 1.51 | 105.53 | 105.53 | 1.00 |
Gmax | Gmin | Gmax/Gmin | Gmax | Gmin | Gmax/Gmin | Gmax | Gmin | Gmax/Gmin | |
BN | 307.59 | 208.50 | 1.48 | 307.59 | 208.50 | 1.48 | 307.59 | 208.50 | 1.48 |
AlN | 137.68 | 57.88 | 2.38 | 137.68 | 57.88 | 2.38 | 137.68 | 57.88 | 2.38 |
GaN | 88.79 | 57.78 | 1.54 | 88.79 | 57.78 | 1.54 | 88.79 | 57.78 | 1.54 |
InN | 58.60 | 36.34 | 1.61 | 58.60 | 36.34 | 1.61 | 58.60 | 36.34 | 1.61 |
vmax | vmin | vmax/vmin | vmax | vmin | vmax/vmin | vmax | vmin | vmax/vmin | |
BN | 0.29 | 0.09 | 3.22 | 0.29 | 0.09 | 3.22 | 0.29 | 0.09 | 3.22 |
AlN | 0.53 | 0.08 | 6.63 | 0.53 | 0.08 | 6.63 | 0.53 | 0.08 | 6.63 |
GaN | 0.40 | 0.15 | 2.67 | 0.40 | 0.15 | 2.67 | 0.40 | 0.15 | 2.67 |
InN | 0.45 | 0.18 | 2.50 | 0.45 | 0.18 | 2.50 | 0.45 | 0.18 | 2.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zou, Y.; Fan, Q.; Yang, Y. Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials 2020, 13, 1280. https://doi.org/10.3390/ma13061280
Zhang Q, Zou Y, Fan Q, Yang Y. Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials. 2020; 13(6):1280. https://doi.org/10.3390/ma13061280
Chicago/Turabian StyleZhang, Qidong, Yucong Zou, Qingyang Fan, and Yintang Yang. 2020. "Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations" Materials 13, no. 6: 1280. https://doi.org/10.3390/ma13061280
APA StyleZhang, Q., Zou, Y., Fan, Q., & Yang, Y. (2020). Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials, 13(6), 1280. https://doi.org/10.3390/ma13061280