Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Material
2.2. Preparation of Cheese Models
2.3. Chemical Composition
2.4. Determination of Free Amino Acids, Biogenic Amines, and Bioactive Dipeptides in Cheese Models with LC-ESI-IT-MS/MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis of Cheese Models
3.2. Contents of Free Amino Acids in the Analyzed Cheese Models
3.3. Contents of Biogenic Amines in the Analyzed Cheese Models
3.4. Determination of Anserine and Carnosine in Cheese Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Ladero, V.; Calles-Enríquez, M.; Fernández, M.; Álvarez, M.A. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Lázaro de la Torre, C.A.; Conte-Junior, C.A. Chapter 6—Detection of Biogenic Amines: Quality and Toxicity Indicators in Food of Animal Origin. In Food Control and Biosecurity, a Volume in Handbook of Food Bioengineering; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 225–257. [Google Scholar]
- European Food Safety Authority. Scientific opinion on risk based control of biogenic amine formation in fermented foods. Panel on Biological Hazards (BIOHAZ). EFSA J. 2011, 9, 1–93. [Google Scholar]
- Buñková, L.; Adamcová, G.; Hudcová, K.; Velichová, H.; Pachlová, V.; Lorencová, E.; Buñka, F. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic. Food Chem. 2013, 141, 548–551. [Google Scholar] [CrossRef]
- Flasarová, R.; Pachlová, V.; Buñková, L.; Menšíková, A.; Georgová, N.; Dráb, V.; Buñka, F. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chem. 2016, 194, 68–75. [Google Scholar]
- Linares, D.M.; Del Río, B.; Ladero, V.; Martínez, N.; Fernández, M.; Martín, M.C.; Álvarez, M.A. Factors influencing biogenic amines accumulation in dairy products. Front. Microbiol. 2012, 180, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Piras, C.; Marincola, F.C.; Savorani, F.; Engelsen, S.B.; Cosentino, S.; Viale, S.; Pisano, M.B. A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem. 2013, 141, 2137–2147. [Google Scholar] [CrossRef]
- Poveda, J.M.; Chicón, R.; Cabezas, L. Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. Int. Dairy J. 2015, 47, 94–101. [Google Scholar] [CrossRef]
- Renes, E.; Diezhandino, I.; Fernández, D.; Ferrazza, R.E.; Tornadijo, M.E.; Fresno, J.M. Effect of autochthonous starter cultures on the biogenic amine content of ewe’s milk cheese throughout ripening. Food Microbiol. 2014, 44, 271–277. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Restuccia, D.; Curcio, M.; Parisi, O.I.; Iemma, F.; Picci, N. Determination of biogenic amines in different cheese samples by LC with evaporative light scattering detector. J. Food Compos. Anal. 2013, 29, 43–51. [Google Scholar] [CrossRef]
- Wunderlichová, L.; Buñková, L.; Koutný, M.; Jančová, P.; Buñka, F. Formation, degradation, and detoxification of putrescine by foodborne bacteria: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1012–1030. [Google Scholar] [CrossRef]
- Buñková, L.; Buñka, F.; Mantlová, G.; Cablová, A.; Sedláce, I.; Svec, P.; Pachlová, V.; Kraácmar, S. The effect of ripening and storage conditions on the distribution of tyramine: Putrescine and cadaverine in Edam-cheese. Food Microbiol. 2010, 27, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Ladero, V.; Sánchez-Llana, E.; Fernández, M.; Álvarez, M.A. Survival of biogenic amine-producing dairy LAB strains at pasteurisation conditions. Int. J. Food Sci. Technol. 2011, 46, 516–521. [Google Scholar] [CrossRef]
- Aly, S.; Floury, J.; Piot, M.; Lortal, S.; Jeanson, S. The efficacy of nisin can drastically vary when produced in situ in model cheeses. Food Microbiol. 2012, 32, 185–190. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of December 16, 2008 on food additives. Off. J. Eur. Communities 2008, 50, 18. [Google Scholar]
- Galvez, A.; Abriouel, H.; Lucas-Lopez, R.; ben Omar, N. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef]
- Garde, S.; Tomillo, J.; Gaya, P.; Medina, M.; Nuñez, M. Proteolysis in Hispánico cheese manufactured using a mesophilic starter, a thermophilic starter and bacteriocin-producing Lactococcus lactis subsp. lactis adjunct culture. J. Agr. Food Chem. 2002, 50, 3479–3485. [Google Scholar] [CrossRef]
- Martínez-Cuesta, M.C.; Requena, T.; Peláez, C. Use of a bacteriocin-producing transconjugant as starter in acceleration of cheese ripening. Int. J. Food Microbiol. 2001, 70, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Perin, L.M.; Dal Bello, B.; Belviso, S.; Zeppa, G.; Carvalho, A.F.; Cocolin, L.; Nero, L.A. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05. Int. J. Food Microbiol. 2015, 214, 159–167. [Google Scholar] [CrossRef]
- Rossi, F.; Veneri, G. Use of bacteriocinogenic cultures without inhibiting cheese associated nonstarter lactic acid bacteria; a trial with Lactobacillus plantarum. Challenges 2016, 7, 4. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.P.; Deniel, C.; Rousseau, M.; Vassal, L.; Gripon, J.C. Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J. 1994, 4, 51–269. [Google Scholar] [CrossRef]
- Ryan, M.P.; Ross, R.P.; Hill, C. Strategy for manipulation of cheese flora using combinations of lacticin-producing and -resistant cultures. App. Environ. Microbiol. 2001, 67, 2699–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Settanni, L.; Massitti, O.; Van Sinderen, D.; Corsetti, A. In situ activity of a bacteriocin producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 2004, 99, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M. Bioactive peptides in milk: From encrypted sequences to nutraceutical aspects. Beverages 2017, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Diana, M.; Rafecas, M.; Arco, C.; Quílez, J. Free amino acid profile of Spanish artisanal cheeses: Importance of gamma-aminobutyric acid (GABA) and ornithine content. J. Food Compos. Anal. 2014, 35, 94–100. [Google Scholar] [CrossRef]
- Renes, E.; Ladero, V.; Tornadijo, M.E.; Fresno, J.M. Production of sheep milk cheese with highγ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food Microbiol. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Kurata, K.; Nagasawa, M.; Tomonaga, S.; Aoki, M.; Morishita, K.; Denbow, D.M.; Furuse, M. Orally administered L-ornithine elevates brain L-ornithine levels and has an anxiolytic-like effect in mice. Nutr. Neurosci. 2011, 14, 243–248. [Google Scholar] [CrossRef]
- Sugino, T.; Shirai, T.; Kajimoto, Y.; Kajimoto, O. L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr. Res. 2008, 28, 738–743. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Mori, M.; Mizuno, D.; Konoha-Mizuno, K.; Sadakane, Y.; Kawahara, M. Quantitative analysis of carnosine and anserine in foods by performing high performance liquid chromatography. Biomed. Res. Trace Elem. 2015, 26, 147–152. [Google Scholar]
- Corona, C.; Frazzini, V.; Silvestri, E.; Lattanzio, R.; La Sorda, R.; Piantelli, M.; Canzoniero, L.M.; Ciavardelli, D.; Rizzarelli, E.; Sensi, S.L. Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS ONE 2011, 6, e17971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szcześniak, D.; Budzeń, S.; Kopeć, W.; Rymaszewska, J. Anserine and carnosine supplementation in the elderly: Effects on cognitive functioning and physical capacity. Arch. Gerontol. Geriat. 2014, 59, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Chez, M.G.; Buchanan, C.P.; Aimonovitch, M.C.; Becker, M.; Schaefer, K.; Black, C.; Komen, J. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J. Child Neurol. 2002, 17, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Iovine, B.; Iannella, M.L.; Nocella, F.; Pricolo, M.R.; Bevilacqua, M.A. Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production. Cancer Lett. 2012, 315, 122–128. [Google Scholar] [CrossRef]
- Roberts, P.R.; Zaloga, G.P. Cardiovascular effects of carnosine. Biochem. USA 2000, 65, 856–861. [Google Scholar]
- Tomonaga, S.; Hayakawa, T.; Yamane, H.; Maemura, H.; Sato, M.; Takahata, Y.; Morimatsu, F.; Furuse, M. Oral administration of chicken breast extract increases brain carnosine and anserine concentrations in rats. Nutr. Neurosci. 2007, 10, 181–186. [Google Scholar] [CrossRef]
- Garbowska, M.; Pluta, A.; Berthold-Pluta, A. Antihypertensive peptide activity in Dutch-Type cheese models prepared with different additional strains of Lactobacillus genus bacteria. Appl. Sci. 2019, 9, 1674. [Google Scholar] [CrossRef] [Green Version]
- Szterk, A.; Roszko, M. Simultaneous determination of free amino acids, l-carnosine, purine, pyrimidine, and nucleosides in meat by liquid chromatography/single quadrupole mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 664–680. [Google Scholar] [CrossRef]
- Guinee, T.; Auty, M.; Fenolen, M. The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. Int. Dairy J. 2000, 10, 277–288. [Google Scholar] [CrossRef]
- Sadowska, J.; Białobrzewski, I.; Jeliński, T.; Markowski, M. Effect of fat content and storage time on the rheological properties of Dutch-type cheese. J. Food Eng. 2009, 94, 254–259. [Google Scholar] [CrossRef]
- Pachlová, V.; Buňková, L.; Flasarová, R.; Salek, R.N.; Dlabajová, A.; Butor, I.; Buňkaa, F. Biogenic amine production by nonstarter strains of Lactobacillus curvatus and Lactobacillus paracasei in the model system of Dutch-type cheese. LWT Food Sci. Technol. 2018, 97, 730–735. [Google Scholar] [CrossRef]
- Redruello, B.; Ladero, V.; Cuesta, I.; Álvarez-Buylla, J.R.; Cruz Martín, M.; Fernández, M.; Alvarez, M.A. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem. 2013, 139, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.J.; Steele, J.L. Fermented Dairy Products. In Food Microbiology; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington DC, USA, 2013; pp. 825–839. [Google Scholar]
- Pappa, E.C.; Kandarakis, I.; Anifantakis, E.M.; Zerfiridis, G.K. Influence of types of milk and culture on the manufacturing practices, composition and sensory characteristics of Teleme cheese during ripening. Food Control 2006, 17, 570–581. [Google Scholar] [CrossRef]
- Michaelidou, A.; Katsiari, M.C.; Kondyli, E.; Voutsinas, L.P.; Alichanidis, E. Effect of a commercial adjunct culture on proteolysis in low-fat Feta-type cheese. Int. Dairy J. 2003, 13, 179–189. [Google Scholar] [CrossRef]
- Madrau, M.A.; Mangia, N.P.; Murgia, M.A.; Sanna, M.G.; Garau, G.; Leccis, L.; Caredda, M.; Deiana, P. Employment of autochthonous microflora in Pecorino Sardo cheese manufacturing and evolution of physicochemical parameters during ripening. Int. Dairy J. 2006, 16, 876–885. [Google Scholar] [CrossRef]
- Azarnia, S.; Robert, N.; Lee, B. Biotechnological methods to accelerate cheddar cheese ripening. Crit. Rev. Biotechnol. 2006, 26, 121–143. [Google Scholar] [CrossRef]
- Sallami, L.; Kheadr, E.E.; Fliss, I.; Vuillemard, J.C. Impact of autolytic, proteolytic, and nisin-producing adjunct cultures on biochemical and textural properties of Cheddar cheese. J. Dairy Sci. 2004, 87, 1585–1594. [Google Scholar] [CrossRef]
- Joosten, H.M.L.J.; Stadhouders, J. Conditions allowing the formation of biogenic amines in cheese: 1: Decarboxylative properties of starter bacteria. Neth. Milk Dairy J. 1987, 41, 247–258. [Google Scholar]
- Ekici, K.; Okut, H.; Isleyici, O.; Sancak, Y.C.; Tuncay, R.M. The determination of some microbiological and chemical features in herby cheese. Foods 2019, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Sagun, E.; Ekici, K.; Durmaz, H. The formation of histamine in Herby cheese during ripening. J. Food Qual. 2005, 28, 171–178. [Google Scholar] [CrossRef]
- Andic, S.; Genccelep, H.; Köse, S. Determination of biogenic amines in Herby cheese. Int. J. Food Prop. 2010, 13, 1300–1314. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.-S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komprda, T.; Smělá, D.; Novická, K.; Kalhotka, L.; Šustová, K.; Pechová, P. Content and distribution of biogenic amines in Dutch-type hard cheese. Food Chem. 2007, 102, 129–137. [Google Scholar] [CrossRef]
- Moret, S.; Bortolomeazzi, R.; Feruglio, M.; Lercker, G. Determination of biogenic amines in Italian cheeses. Dairy Sci. Tech. 1992, 43, 187–198. [Google Scholar]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Roig-Sagués, A.X.; Trujillo-Mesa, A.J.; Vidal-Carou, M.C. Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. J. Dairy Res. 2004, 71, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.A.; Moreno-Arribas, M.V. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.; Lìnares, D.M.; del Río, B.; Ladero, V.; Álvarez, M.A. HPLC quantification of biogenic amines in cheeses: Correlation with PCR-detection of tyramine-producing microorganisms. J. Dairy Res. 2007, 74, 276–282. [Google Scholar] [CrossRef]
Cheese Model Variant | Coagulating Enzyme | Basic Starter | Additional Starter |
---|---|---|---|
Control | Fromase 2200 TL (to all cheese model variants) | 2.0% CHN-19 (to all cheese model variants) | — |
LC 11454 | 1.5% L. lactis 11454 | ||
LC 2379 | 1.5% L. lactis 2379 | ||
LC 476 | 1.5% L. lactis 476 |
Time (min) | Composition | |
---|---|---|
Mobile Phase A (1% Formic Acid) | Mobile Phase B (20% Methanol in Acetonitrile) | |
0–15 | 91% | 9% |
15–40 | 50% | 50% |
40–50 | 20% | 80% |
50–60 | 91% | 9% (column washing) |
Component | Cheese Model | |||
---|---|---|---|---|
Control | LC 11454 | LC 2379 | LC 476 | |
Moisture (%) | 50.31 a | 50.76 a | 51.02 a | 50.74 a |
MFFB (%) | 61.37 a | 62.11 a | 62.60 a | 62.06 a |
Fat (%) | 18.03 a | 18.28 a | 18.50 a | 18.24 a |
FDM (%) | 36.28 a | 37.12 a | 37.77 a | 37.03 a |
pH | 5.33 a | 5.31 a | 5.29 a | 5.32 a |
Protein (%) | 26.01 a | 26.04 a | 25.96 a | 25.31 a |
Added | Control | LC 11454 | LC 2379 | LC 476 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time of Ripening (week) | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 |
Alanine | 4.58 a | 12.48 AB | 11.43 AB | 10.91 b | 37.05 C | 59.42 C | 14.52 b | 20.10 B | 20.25 B | 2.51 a | 5.38 A | 8.44 A |
Arginine | 18.31 a | 17.68 A | 16.59 A | 18.13 a | 16.54 A | 17.08 A | 19.07 a | 19.80 A | 15.82 A | 16.01 a | 17.60 A | 17.52 A |
Asparagine | 73.11 a | 77.93 A | 88.81 A | 133.05 b | 136.65 B | 187.57 C | 126.11 b | 135.13 B | 140.71 B | 69.50 a | 80.81 A | 93.22 A |
Asparagine acid | 16.56 b | 31.45 B | 54.50 B | 33.98 c | 36.58 B | 67.08 C | 64.13 d | 77.51 C | 86.67 D | 1.46 a | 1.64 A | 1.66 A |
Glutamine | ND a | ND A | ND A | 31.31 b | 34.84 B | 56.18 C | ND a | ND A | 12.57 B | ND a | ND A | ND A |
Glutamic acid | 10.94 a | 11.64 A | 30.76 A | 132.30 b | 177.85 B | 428.93 B | 524.19 c | 534.04 C | 706.76 C | 2.90 a | 3.88 A | 35.92 A |
Glycine | 0.30 a | 0.32 A | 0.49 A | 0.29 a | 4.32 C | 10.47 C | 1.55 a | 2.50 AB | 3.69 B | 0.15 a | 0.64 A | 1.10 A |
Histidine | 0.13 a | 28.31 C | 123.91 C | 33.59 c | 89.81 D | 117.86 C | 5.46 a | 5.67 A | 6.17 A | 14.11 b | 16.59 B | 18.67 B |
Isoleucine | 84.40 c | 77.09 B | 70.88 B | 68.00 b | 70.52 B | 75.29 B | 51.33 a | 58.15 A | 59.22 A | 66.16 b | 69.99 B | 85.67 C |
Leucine | 88.12 c | 97.22 C | 105.94 B | 62.31 ab | 58.94 A | 57.21 A | 50.36 a | 55.32 A | 59.37 A | 71.82 b | 79.14 B | 110.01 B |
Lysine | 15.91 a | 18.15 B | 30.41 B | 41.33 b | 35.01 C | 33.27 B | 8.72 a | 9.42 A | 12.12 A | 7.54 a | 9.85 A | 13.67 A |
Methionine | 10.16 b | 12.77 C | 15.06 A | 11.28 b | 24.84 B | 33.87 B | 4.78 a | 6.04 A | 9.14 A | 7.37 ab | 7.80 A | 9.20 A |
Phenylalanine | 3.35 a | 26.32 A | 41.65 A | 47.47 c | 57.44 C | 64.98 B | 35.98 b | 36.35 B | 37.26 A | 10.41 a | 18.57 A | 30.18 A |
Proline | 24.40 a | 37.74 AB | 38.01 AB | 101.52 b | 122.77 C | 130.96 C | 37.90 a | 41.96 B | 46.11 B | 23.93 a | 25.79 A | 27.07 A |
Serine | ND a | ND A | ND A | 7.61 b | 14.27 C | 30.29 C | 8.22 b | 8.03 B | 12.93 B | ND a | ND A | ND A |
Threonine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Tryptophan | ND a | ND A | 20.89 B | 24.02 bc | 21.96 B | ND A | 24.91 c | ND A | ND A | 18.93 b | 21.36 B | 24.99 B |
Tyrosine | ND a | ND A | ND A | 34.46 c | 50.52 C | ND A | 25.63 b | 32.67 B | 34.81 B | ND a | ND A | ND A |
Valine | 30.04 a | 36.32 A | 34.27 A | 52.02 b | 90.87 C | 107.30 C | 48.31 b | 54.27 B | 65.31 B | 21.95 a | 43.08 AB | 66.06 B |
Cystine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Taurine | 13.58 a | 29.50 BC | 49.87 C | 10.32 a | 20.48 AB | 22.58 B | 13.03 a | 11.07 A | 11.12 A | 28.91 b | 34.28 C | 49.76 C |
Citrulline | 21.28 a | 25.93 A | 29.73 A | 33.27 b | 27.56 A | 24.61 A | 35.34 b | 31.40 A | 28.88 A | 22.27 a | 25.32 A | 26.85 A |
Sarcosine | 32.78 b | ND A | ND A | 42.33 b | 35.59 B | ND A | ND a | ND A | 23.43 B | 35.26 b | 40.85 C | 46.43 C |
Ornithine | ND a | 33.36 A | 37.72 A | 52.63 b | 54.09 C | 67.81 B | ND a | 44.18 B | 45.25 A | ND a | 32.83 A | 35.86 A |
Total free amino acids (TFAA) | 447.94 a ± 16.08 | 574.22 A ± 9.36 | 800.92 B ± 28.63 | 982.13 b ± 46.77 | 1218.51 B ± 40.13 | 1592.78 D ± 19.06 | 1099.52 c ± 21.71 | 1183.61 B ± 8.31 | 1437.59 C ± 38.59 | 421.21 a ± 4.22 | 535.39 A ±16.10 | 702.30 A ± 18.39 |
Added | Control | LC 11454 | LC 2379 | LC 476 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time of Ripening (week) Biogenic Amines | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 |
Agmatine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Phenylethylamine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Histamine | 17.69 a | 22.33 A | 40.98 B | 27.51 b | 33.79 B | 42.29 B | 14.98 a | 35.11 B | 37.10 B | 17.58 a | 21.67 A | 24.34 A |
Cadaverine | 0.64 b | 0.78 C | 4.62 B | 0.51 ab | 0.43 AB | 0.60 A | 0.64 b | 0.29 A | 0.13 A | 0.43 a | 0.55 B | 1.13 A |
Putrescine | 0.32 c | 0.38 AB | 3.05 B | 0.19 bc | 0.11 A | ND A | 0.12 ab | 0.16 AB | ND A | ND a | 0.56 C | 0.14 A |
Spermidine | 1.62 c | 1.17 B | 0.48 B | 0.51 ab | 0.26 A | NDA | 0.62 b | 0.86 B | 1.03 C | 0.34 a | 0.83 B | 1.07 C |
Spermine | 1.60 d | 0.31 A | ND A | 0.39 c | 0.16 A | ND A | 0.22 b | 0.22 A | ND A | ND a | 0.21 A | 0.31 B |
Tryptamine | 2.49 b | 3.88 B | ND A | ND a | ND A | ND A | 4.39 c | 3.64 B | 3.22 B | ND a | 3.63 B | 4.59 C |
Tyramine | 1.21 c | 1.32 B | 4.29 C | 0.95 b | 1.23 B | 1.42 B | 0.92 b | 0.70 A | 0.65 A | 0.40 a | 0.67 A | 0.90 A |
Total BA | 25.56 bc ± 1.13 | 30.17 AB ± 3.19 | 53.41 C ± 4.78 | 30.05 c ± 0.34 | 35.97 BC ± 0.30 | 44.31 B ± 0.20 | 21.90 ab ± 0.12 | 40.99 C ± 2.20 | 42.14 B ± 4.52 | 18.76 a ± 1.49 | 28.10 A ± 1.58 | 32.48 A ± 0.94 |
Added | Control | LC 11454 | LC 2379 | LC 476 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time of Ripening (week) Bioactive Peptides | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 |
Anserine | 66.33 a | 85.17 A | 79.29 A | 88.63 c | 95.95 B | 106.92 B | 103.08 d | 94.10 B | 78.55 A | 79.35 b | 80.01 A | 79.23 A |
L-carnosine | 8.37 b | ND A | ND A | ND a | ND A | 35.23 B | 29.83 c | 11.48 B | ND A | 9.99 b | ND A | ND A |
Total BP | 74.70 a ± 4.87 | 85.17 A ± 2.98 | 79.29 A ± 2.62 | 88.63 b ± 1.33 | 95.95 B ± 2.63 | 142.15 B ± 4.00 | 132.91 c ± 3.82 | 105.58 C ± 5.37 | 78.55 A ± 8.95 | 89.34 b ± 4.00 | 80.01 A ± 1.73 | 79.23 A ± 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbowska, M.; Pluta, A.; Berthold-Pluta, A. Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models. Materials 2020, 13, 1835. https://doi.org/10.3390/ma13081835
Garbowska M, Pluta A, Berthold-Pluta A. Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models. Materials. 2020; 13(8):1835. https://doi.org/10.3390/ma13081835
Chicago/Turabian StyleGarbowska, Monika, Antoni Pluta, and Anna Berthold-Pluta. 2020. "Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models" Materials 13, no. 8: 1835. https://doi.org/10.3390/ma13081835
APA StyleGarbowska, M., Pluta, A., & Berthold-Pluta, A. (2020). Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models. Materials, 13(8), 1835. https://doi.org/10.3390/ma13081835