Recent Advances in Anodes for Microbial Fuel Cells: An Overview
Abstract
:1. Introduction
2. Electrode Materials
2.1. Anode Materials
2.1.1. Carbon-Based Materials
2.1.2. Natural Biomass Materials for the Anode
2.1.3. Metal and Metal Oxide-Based Materials
2.1.4. Conductive Polymer-Based Composite Material
2.2. Cathode Materials
3. Effects of Anodes in MFCs
3.1. Effect of Anode on Removal of Pollutants
3.2. Effect of the Anode on Energy Production
4. Challenges and Future Perspectives
- The anode materials are very important for the economic stability of MFCs. Therefore, reducing the costs for anode materials is a serious problem for practical implementations in MFC applications. To solve this issue, we should focus on waste materials and change them into a carbonized form that can be further used as anode material in several forms, such as rods, brushes, and plates. Waste materials are a good resource for making carbon-based materials. However, another method is the development of composites with metals and using polymers to make them more efficient at a low cost. The selection of materials is also a major issue for MFC operation because most researchers use conventional materials, and very little work seems to have been done on highly conductive materials or composite materials [183].
- During the development of an anode, the binder material is very important for fabricating the material in the required shape. The selection of binders is a very critical factor for a researcher because the binder serves as the binding agent in the material to make that material more cohesive and stable. It is desirable to find more suitable and cost-effective binders for anode electrodes. To the best of our knowledge, there is no comprehensive review article that reports on using binders for electrode fabrication.
- The electrode’s size and design are very important aspects in the fabrication of anodes. The sufficient electrode spacing and surface area of the electrode are responsible for bacterial growth and electron transformation from the anode to the cathode in MFCs [184].
- The modification of anode electrodes has produced major improvements in MFCs regarding power generation and the bioremediation of wastewater. However, the relevant mechanisms and proper guidelines remain unclear. Researchers must explore a more proper mechanism so modifications can be made more efficiently.
- Another problem is the long-term stability of anodes at the industrial level. Currently, most studies focus on energy output, but no one has yet published any guidelines or discussions about electrode stability over the long-term [185,186]. Stability is a major issue that limits MFC applications at an industrial scale. Thus, researchers should focus on finding an effective fabrication technique for electrodes while keeping in mind the stability factor for anodic materials. A highly stable binder like nafion or polysulfones can be employed to bind the graphene oxide material to make anode electrodes able to maintain their long-term stability.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choudhury, P.; Prasad Uday, U.S.; Mahata, N.; Tiwari, O.N.; Ray, R.N.; Bandyopadhyay, T.K.; Bhunia, B. Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives. Renew. Sustain. Energy Rev. 2017, 79, 372–389. [Google Scholar] [CrossRef]
- Ibrahim, N.; Zainal, S.F.F.S.; Aziz, H.A. Application of UV-Based Advanced Oxidation Processes in Water and Wastewater Treatment. In Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment; IGI Global: Hershey, PA, USA, 2019; pp. 384–414. [Google Scholar]
- Logan, B.E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodali, M.; Gokhale, R.; Santoro, C.; Serov, A.; Artyushkova, K.; Atanassov, P. High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC). J. Electrochem. Soc. 2017, 164, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Samrat, M.N.; Rao, K.K.; Ruggeri, B.; Tommasi, T. Denitrification of water in a microbial fuel cell (MFC) using seawater bacteria. J. Clean. Prod. 2018, 178, 449–456. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, X.; Owens, G.; Brunetti, G.; Zhou, J.; Yong, X.; Xie, X.; Zhang, L.; Wei, P.; Jia, H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour. Technol. 2018, 270, 11–19. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Choudhury, P.; Prasad Uday, U.S.; Bandyopadhyay, T.K.; Ray, R.N.; Bhunia, B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered 2017, 8, 471–487. [Google Scholar] [CrossRef] [Green Version]
- ElMekawy, A.; Hegab, H.M.; Losic, D.; Saint, C.P.; Pant, D. Applications of graphene in microbial fuel cells: The gap between promise and reality. Renew. Sustain. Energy Rev. 2017, 72, 1389–1403. [Google Scholar] [CrossRef]
- Modi, A.; Singh, S.; Verma, N. In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: Its positive effects on the performance of a microbial fuel cell. Electrochim. Acta 2016, 190, 620–627. [Google Scholar] [CrossRef]
- Cai, T.; Meng, L.; Chen, G.; Xi, Y.; Jiang, N.; Song, J.; Zheng, S.; Liu, Y.; Zhen, G.; Huang, M. Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere 2020, 248, 125985–125999. [Google Scholar] [CrossRef]
- Logan, B.E.; Maxwell, J.W.; Kyoung-Yeol, K.; Weihua, H.; Yujie, F.; Pascal, E.S. Assessment of Microbial Fuel Cell Configurations and Power Densities. Environ. Sci. Technol. Lett. 2015, 28, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhou, J.; Zhou, X.; Wang, X.; Li, B.; Santoro, C.; Grattieri, M.; Babanova, S.; Artyushkova, K.; Atanassov, P. Surface modification of microbial fuel cells anodes: Approaches to practical design. Electrochim. Acta 2014, 134, 116–126. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.-Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Yadav, A.K.; Mishra, B.K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour. Technol. 2015, 195, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, Y.; Chen, S. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources 2011, 196, 164–168. [Google Scholar] [CrossRef]
- Borsje, C.; Liu, D.; Sleutels, T.H.; Buisman, C.J.; Ter Heijne, A. Performance of single carbon granules as perspective for larger scale capacitive bioanodes. J. Power Sources 2016, 325, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Sonawane, J.M.; Yadav, A.; Ghosh, P.C.; Adeloju, S.B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576. [Google Scholar] [CrossRef]
- Katuri, K.P.; Kalathil, S.; Ragab, A.A.; Bian, B.; Alqahtani, M.F.; Pant, D.; Saikaly, P.E. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. Adv. Mater. 2018, 30, 1707072. [Google Scholar] [CrossRef]
- Sokol, N.W.; Bradford, M.A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2019, 12, 46. [Google Scholar] [CrossRef]
- Li, F.; Sharma, Y.; Lei, Y.; Li, B.; Zhou, Q. Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol. 2010, 160, 168. [Google Scholar] [CrossRef]
- Zhao, F.; Rahunen, N.; Varcoe, J.R.; Chandra, A.; Avignone-Rossa, C.; Thumser, A.E.; Slade, R.C. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 2008, 42, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Xu, Y.-F.; Rao, H.-S.; Xu, W.-J.; Chen, H.-Y.; Zhang, W.-X.; Kuang, D.-B.; Su, C.-Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9, 1468–1475. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Meng, S.; Guo, L.; Huang, J.; Liu, Y.; Wang, W.; Chen, X. Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Phys. Rev. B. 2015, 91, 094429. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Meng, N.; Shehzad, K.; Xu, Y.; Qu, S.; Yu, B.; Luo, J. Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition. Nanotechnology 2015, 26, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Bhamare, Y.M.; Koinkar, P.; Furube, A.; More, M. Femtosecond transient absorption spectroscopy of laser-ablated graphite and reduced graphene oxide for optical switching behavior. Opt. Mater. X 2019, 2, 100026. [Google Scholar] [CrossRef]
- Ter-Heijne, A.; Hamelers, H.V.; Saakes, M.; Buisman, C.J. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta 2008, 53, 5697–5703. [Google Scholar] [CrossRef]
- Lowy, D.A.; Leonard, M. Harvesting energy from the marine sediment–water interface II: Kinetic activity of anode materials. Biosens. Bioelectron. 2006, 21, 2058–2063. [Google Scholar] [CrossRef]
- Yazdi, A.A.; D’Angelo, L.; Omer, N.; Windiasti, G.; Lu, X.; Xu, J. Carbon nanotube modification of microbial fuel cell electrodes. Biosens. Bioelectron. 2016, 85, 536–552. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Yang, X.; Jiang, Y.; Bian, Y.; Chen, C.; Zhang, X.; Huang, X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens. Bioelectron. 2016, 81, 32–38. [Google Scholar] [CrossRef]
- Logan, B.E. Materials and Configurations for Scalable Microbial Fuel Cells. U.S. Patent 8962165B2, 2015. [Google Scholar]
- Sun, H.; Xu, S.; Zhuang, G.; Zhuang, X. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. J. Environ. Sci. 2016, 39, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Parkash, A. Generation of Electricity from Sewage Sludge Using Dual Chambered Microbial Fuel Cell Containing Copper as Electrodes. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 45, 864–867. [Google Scholar]
- Guo, X.; Zhan, Y.; Chen, C.; Cai, B.; Wang, Y.; Guo, S. Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew. Energy 2016, 87, 437–444. [Google Scholar] [CrossRef]
- Yasri, N.G.; Nakhla, G. Electrochemical Behavior of Anode-Respiring Bacteria on Doped Carbon Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 35150–35162. [Google Scholar] [CrossRef]
- Bhanvase, B.; Shende, T.; Sonawane, S. A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Agnoli, S.; Favaro, M. Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 2016, 4, 5002–5025. [Google Scholar] [CrossRef]
- Deng, Y.; Fang, C.; Chen, G. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Gao, Y. Graphene and polymer composites for supercapacitor applications: A review. Nanoscale Res. Lett. 2017, 12, 387. [Google Scholar] [CrossRef]
- Tan, R.K.L.; Reeves, S.P.; Hashemi, N.; Thomas, D.G.; Kavak, E.; Montazami, R.; Hashemi, N.N. Graphene as a flexible electrode: Review of fabrication approaches. J. Mater. Chem. A 2017, 5, 17777–17803. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Li, L.; Ma, C.; Wang, S.; Shi, Y.; Koratkar, N.; Ren, W.; Li, F.; Cheng, H.-M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356–365. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Knowles, G.P.; MacFarlane, D.R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. Engl. 2017, 56, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ibrahim, M.N.M. The use of date palm as a potential adsorbent for wastewater treatment: A review. Environ. Sci. Pollut. Res. Int. 2012, 19, 1464–1484. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Mallavarapu, M.; Naidu, R.; Chen, Z. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere 2018, 193, 618–624. [Google Scholar] [CrossRef]
- Singh, S.; Bairagi, P.K.; Verma, N. Candle soot-derived carbon nanoparticles: An inexpensive and efficient electrode for microbial fuel cells. Electrochim. Acta 2018, 264, 119–127. [Google Scholar] [CrossRef]
- Bose, D.; Sridharan, S.; Dhawan, H.; Vijay, P.; Gopinath, M. Biomass derived activated carbon cathode performance for sustainable power generation from Microbial Fuel Cells. Fuel 2019, 236, 325–337. [Google Scholar] [CrossRef]
- Hung, Y.H.; Liu, T.Y.; Chen, H.Y. Renewable Coffee Waste-Derived Porous Carbons as Anode Materials for High-Performance Sustainable Microbial Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 16991–16999. [Google Scholar] [CrossRef]
- Chang, W.T.; Chao, Y.H.; Li, C.W.; Lin, K.L.; Wang, J.J.; Kumar, S.R.; Lue, S.J. Graphene oxide synthesis using microwave-assisted vs. modified Hummer’s methods: Efficient fillers for improved ionic conductivity and suppressed methanol permeability in alkaline methanol fuel cell electrolytes. J. Power Sources 2019, 414, 86–95. [Google Scholar] [CrossRef]
- Chen, S.; He, G.; Hu, X.; Xie, M.; Wang, S.; Zeng, D.; Hou, H.; Schröder, U. A three dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. ChemSusChem 2012, 5, 1059–1063. [Google Scholar] [CrossRef]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Ye, D.; Zhu, X.; Liao, Q.; Zhang, B. Tubular bamboo charcoal for anode in microbial fuel cells. J. Power Sources 2014, 272, 277–282. [Google Scholar] [CrossRef]
- Tang, J.; Chen, S.; Yuan, Y.; Cai, X.; Zhou, S. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens. Bioelectron. 2015, 71, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yuan, Y.; Liu, T.; Zhou, S. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J. Power Sources 2015, 274, 170–176. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, T.; Fu, P.; Tang, J.; Zhou, S. Conversion of sewage sludge into high-performance bifunctional electrode materials for microbial energy harvesting. J. Mater. Chem. A 2015, 3, 8475–8482. [Google Scholar] [CrossRef]
- Chen, S.; Tang, J.; Jing, X.; Liu, Y.; Yuan, Y.; Zhou, S. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting. Electrochim. Acta 2016, 212, 883–889. [Google Scholar] [CrossRef]
- Li, D.; Deng, L.; Yuan, H.; Dong, G.; Chen, J.; Zhang, X.; Chen, Y.; Yuan, Y. N, P-doped mesoporous carbon from onion as trifunctional metal-free electrode modifier for enhanced power performance and capacitive manner of microbial fuel cells. Electrochim. Acta 2018, 262, 297–305. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M. A Review Article of Nanoparticles; Synthetic Approaches and Wastewater Treatment Methods. Int. Res. J. Eng. Technol. 2019, 6, 1–7. [Google Scholar]
- Nitisoravut, R.; Thanh, C.N.; Regmi, R. Microbial fuel cells: Advances in electrode modifications for improvement of system performance. Int. J. Green Energy 2017, 14, 712–723. [Google Scholar] [CrossRef]
- Erable, B.; Byrne, N.; Etcheverry, L.; Achouak, W.; Bergel, A. Single medium microbial fuel cell: Stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities. Int. J. Hydrog. Energy 2017, 42, 26059–26067. [Google Scholar] [CrossRef] [Green Version]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Torabiyan, A.; Bidhendi, N.G.R.; Mehradadi, N.; Javadi, K.H. Application of nano-electrode platinum (Pt) and nano-wire titanium (Ti) for increasing electrical energy generation in microbial fuel cells of synthetic wastewater with carbon source (acetate). Int. J. Environ. Res. 2014, 8, 453–460. [Google Scholar]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Stariha, S.; Artyushkova, K.; Serov, A.; Atanassov, P. Non-PGM membrane electrode assemblies: Optimization for performance. Int. J. Hydrog. Energy 2015, 40, 14676–14682. [Google Scholar] [CrossRef] [Green Version]
- Füeg, M.; Borjas, Z.; Estevez-Canales, M.; Esteve-Núñez, A.; Pobelov, I.V.; Broekmann, P.; Kuzume, A. Interfacial electron transfer between Geobacter sulfurreducens and gold electrodes via carboxylate-alkanethiol linkers: Effects of the linker length. Bioelectrochemistry 2019, 126, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Khan, R.M.R.; Saddique, A. Review Article on Applications and Classification of Gold Nanoparticles. Int. J. Res. 2019, 6, 762–768. [Google Scholar]
- Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015, 5, 37553–37567. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, C.; Peng, L.; Yu, G. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv. Funct. Mat. 2015, 25, 1219–1225. [Google Scholar] [CrossRef]
- Radzuan, N.A.M.; Sulong, A.B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 2017, 42, 9262–9273. [Google Scholar] [CrossRef]
- Shahadat, M.; Bushra, R.; Khan, M.R.; Rafatullah, M.; Teng, T.T. A comparative study for the characterization of polyaniline-based nanocomposites and membrane properties. RSC Adv. 2014, 4, 20686–20692. [Google Scholar] [CrossRef]
- Pandit, S.; Chandrasekhar, K.; Jadhav, D.A.; Madhao, M. Contaminant Removal and Energy Recovery in Microbial Fuel Cells. In Microbial Biodegradation of Xenobiotic Compounds; CRC Press: Boca Raton, FL, USA, 2019; pp. 76–95. [Google Scholar]
- Phoon, B.L.; Lai, C.W.; Juan, J.C.; Show, P.L.; Chen, W.H. A review of synthesis and morphology of SrTiO3 for energy and other applications. Int. J. Energy Res. 2019, 43, 5151–5174. [Google Scholar] [CrossRef]
- Gnana Kumar, G.; Kirubaharan, C.J.; Udhayakumar, S.; Ramachandran, K.; Karthikeyan, C.; Renganathan, R.; Nahm, K.S. Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain. Chem. Eng. 2014, 2, 2283–2290. [Google Scholar] [CrossRef]
- Dumitru, A.; Vulpe, S.; Radu, A.; Antohe, S. Influence of nitrogen environment on the performance of conducting polymers/CNTs nanocomposites modified anodes for microbial fuel cells (MFCs). Rom. J. Phys. 2018, 63, 605–625. [Google Scholar]
- Ates, M.; Eker, A.A.; Eker, B. Carbon nanotube-based nanocomposites and their applications. J. Adhes. Sci. Technol. 2017, 31, 1977–1997. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Gong, L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. Materials 2020, 13, 548. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-M.; Wang, C.-T.; Yang, Y.-C.; Chen, W.-J. Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell. Int. J. Hydrog. Energy 2013, 38, 1113–1137. [Google Scholar] [CrossRef]
- Verma, V.; Kumar, S.; Manalastas, W., Jr.; Satish, R.; Srinivasan, M. Progress in Rechargeable Aqueous Zinc-and Aluminum-Ion Battery Electrodes: Challenges and Outlook. Adv. Sustain. Syst. 2019, 3, 18–111. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Patil, S.A.; Brown, R.K.; Schröder, U. Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Appl. Energy 2019, 233, 15–28. [Google Scholar] [CrossRef]
- Shi, J.-L.; Qi, R.; Zhang, X.-D.; Wang, P.-F.; Fu, W.-G.; Yin, Y.-X.; Xu, J.; Wan, L.-J.; Guo, Y.-G. High-thermal-and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42829–42835. [Google Scholar] [CrossRef]
- Deng, Q.; Li, X.; Zuo, J.; Ling, A.; Logan, B.E. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources 2010, 195, 1130–1135. [Google Scholar] [CrossRef]
- Tran, H.-T.; Ryu, J.-H.; Jia, Y.-H.; Oh, S.-J.; Choi, J.-Y.; Park, D.-H.; Ahn, D.-H. Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane. Water Sci. Technol. 2010, 61, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Ismail, M.; Kamarudin, S.K.; Saeedfar, K.; Daud, W.R.W.; Hassan, S.H.; Heng, L.Y.; Alam, J.; Oh, S.-E. Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl. Energy 2013, 102, 1050–1056. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Ren, Y.; Wang, X. A monolithic three-dimensional macroporous graphene anode with low cost for high performance microbial fuel cells. RSC Adv. 2016, 6, 21001–21010. [Google Scholar] [CrossRef]
- Osgood, H.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625. [Google Scholar] [CrossRef]
- Akbari, E.; Buntat, Z. Benefits of using carbon nanotubes in fuel cells: A review. Int. J. Energy Res. 2017, 41, 92–102. [Google Scholar] [CrossRef]
- Zhao, C.; Gai, P.; Liu, C.; Wang, X.; Xu, H.; Zhang, J.; Zhu, J.-J. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A 2013, 1, 12587–12594. [Google Scholar] [CrossRef]
- Chen, J.; Deng, F.; Hu, Y.; Sun, J.; Yang, Y. Antibacterial activity of graphene-modified anode on Shewanellaoneidensis MR-1 biofilm in microbial fuel cell. J. Power Sources 2015, 290, 80–86. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Shi, F.; Zhang, J.; Zhu, J.-J. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun. 2013, 49, 6668–6670. [Google Scholar] [CrossRef]
- Ma, M.; You, S.; Gong, X.; Dai, Y.; Zou, J.; Fu, H. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells. J. Power Sources 2015, 283, 74–83. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, S.; Yang, J.; Li, C.; Sun, Y.; Cen, K. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells. Chem. Eng. J. 2018, 337, 661–670. [Google Scholar] [CrossRef]
- Iigatani, R.; Ito, T.; Watanabe, F.; Nagamine, M.; Suzuki, Y.; Inoue, K. Electricity generation from sweet potato-shochu waste using microbial fuel cells. J. Biosci. Bioeng. 2019, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheng, S.; Pant, D.; Van Bogaert, G.; Logan, B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Comm. 2009, 11, 2177–2179. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.; Hou, H.; Li, J.; Yang, Y. Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell. J. Clean. Prod. 2019, 221, 678–683. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q. Microbial fuel cells: Enhancement with a polyaniline/carbon felt capacitive bioanode and reduction of Cr (VI) using the intermittent operation. Environ. Chem. Lett. 2018, 16, 319–326. [Google Scholar] [CrossRef]
- Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B Environ. 2018, 237, 491–503. [Google Scholar] [CrossRef]
- Mitov, M.; Chorbadzhiyska, E.; Rashkov, R.; Hubenova, Y. Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions. Int. J. Hydrog. Energy 2012, 37, 16522–16526. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Behera, M.; Jana, P.S.; Ghangrekar, M. Performance evaluation of low-cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour. Technol. 2010, 101, 1183–1189. [Google Scholar] [CrossRef]
- De-Schamphelaire, L.; Boeckx, P.; Verstraete, W. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl. Microbiol. Biotechnol. 2010, 87, 1675–1687. [Google Scholar] [CrossRef]
- Hou, B.; Lu, J.; Wang, H.; Li, Y.; Liu, P.; Liu, Y.; Chen, J. Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation. Bioelectrochemistry 2019, 128, 291–297. [Google Scholar] [CrossRef]
- Rusli, S.F.N.; Bakar, M.H.A.; Loh, K.S.; Mastar, M.S. Review of high-performance biocathode using stainless steel and carbon-based materials in microbial fuel cell for electricity and water treatment. Int. J. Hydrog. Energy 2019, 44, 30772–30787. [Google Scholar] [CrossRef]
- Qiao, Y.; Wen, G.-Y.; Wu, X.-S.; Zou, L. L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells. RSC Adv. 2015, 5, 58921–58927. [Google Scholar] [CrossRef]
- Mehdinia, A.; Ziaei, E.; Jabbari, A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int. J. Hydrog. Energy 2014, 39, 10724–10730. [Google Scholar] [CrossRef]
- Najafabadi, A.T.; Ng, N.; Gyenge, E. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells. Biosens. Bioelectron. 2016, 81, 103–110. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, Y.; Guo, C.X.; Lim, S.; Song, H.; Li, C.M. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol. 2012, 114, 275–280. [Google Scholar] [CrossRef]
- Guo, W.; Cui, Y.; Song, H.; Sun, J. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess Biosyst. Eng. 2014, 37, 1749–1758. [Google Scholar] [CrossRef]
- Kirubaharan, C.J.; Santhakumar, K.; Senthilkumar, N.; Jang, J.H. Nitrogen doped graphene sheets as metal free anode catalysts for the high-performance microbial fuel cells. Int. J. Hydrog. Energy 2015, 40, 13061–13070. [Google Scholar] [CrossRef]
- Yong, Y.-C.; Dong, X.-C.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, S.; Zhao, B.; Zhuang, L.; Wang, Y. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116, 453–458. [Google Scholar] [CrossRef]
- Pareek, A.; Sravan, J.S.; Mohan, S.V. Fabrication of three-dimensional graphene anode for augmenting performance in microbial fuel cells. Carbon Resour. Convers. 2019, 2, 134–140. [Google Scholar] [CrossRef]
- Choi, C.; Cui, Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2012, 107, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Damien, J.; Luo, J.; Jang, H.D.; Huang, J.; He, Z. Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 2012, 208, 187–192. [Google Scholar] [CrossRef]
- Zou, L.; Qiao, Y.; Wu, X.S.; Ma, C.X.; Li, X.; Li, C.M. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis. J. Power Sources 2015, 276, 208–214. [Google Scholar] [CrossRef]
- Santoro, C.; Gokhale, R.; Mecheri, B.; D’Epifanio, A.; Licoccia, S.; Serov, A.; Artyushkova, K.; Atanassov, P. Design of Iron (II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells. ChemSusChem 2017, 10, 3243–3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Kim, K.-Y.; Saikaly, P.E.; Logan, B.E. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ. Sci. 2017, 10, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Chen, Y.; Wei, H.; Li, F.; Hu, Y.; Wei, C.; Feng, C. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim. Acta 2013, 111, 366–373. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.; Zhang, P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J. Power Sources 2013, 224, 139–144. [Google Scholar] [CrossRef]
- Zhao, C.; Gai, P.; Song, R.; Zhang, J.; Zhu, J.-J. Graphene/Au composites as an anode modifier for improving electricity generation in shewanella inoculated microbial fuel cells. Anal. Methods 2015, 7, 4640–4644. [Google Scholar] [CrossRef]
- Kumar, G.G.; Hashmi, S.; Karthikeyan, C.; GhavamiNejad, A.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 2014, 35, 1861–1865. [Google Scholar] [CrossRef]
- Hassan, S.H.; Kim, Y.S.; Oh, S.E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microb. Technol. 2012, 51, 269–273. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Wu, C.C.; Lee, C.Y.; Shih, E.P. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 2009, 194, 199–205. [Google Scholar] [CrossRef]
- Dewan, A.; Beyenal, H.; Lewandowski, Z. Scaling up microbial fuel cells. Environ. Sci. Technol. 2008, 42, 7643–7648. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, S.; Feng, Y.; Merrill, M.D.; Saito, T.; Logan, B.E. Use of carbon mesh anodes and the effect of different pre-treatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43, 6870–6874. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, B. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs). Water Sci. Technol. 2009, 59, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Dumas, C.; Mollica, A.; Féron, D.; Basséguy, R.; Etcheverry, L.; Bergel, A. Marine microbial fuel cell: Use of stainless-steel electrodes as anode and cathode materials. Electrochim. Acta 2007, 53, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Liu, H.; Logan, B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Zhang, B.-G.; Zhou, S.-G.; Zhao, H.-Z.; Shi, C.-H.; Kong, L.-C.; Sun, J.-J.; Yang, Y.; Ni, J.-R. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst. Eng. 2010, 33, 187–194. [Google Scholar] [CrossRef]
- Logan, B.E.; Murano, C.; Scott, K.; Gray, N.D.; Head, I.M. Electricity generation from cysteine in a microbial fuel cell. Water Res. 2005, 39, 942–952. [Google Scholar] [CrossRef]
- Clauwaert, P.; Rabaey, K.; Aelterman, P.; De Schamphelaire, L.; Pham, T.H.; Boeckx, P.; Boon, N.; Verstraete, W. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3354–3360. [Google Scholar] [CrossRef]
- Clauwaert, P.; Van der Ha, D.; Boon, N.; Verbeken, K.; Verhaege, M.; Rabaey, K.; Verstraete, W. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 2007, 41, 7564–7569. [Google Scholar] [CrossRef]
- You, S.J.; Ren, N.Q.; Zhao, Q.L.; Wang, J.Y.; Yang, F.L. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cell 2009, 9, 588–596. [Google Scholar] [CrossRef]
- Benetton, X.D.; Navarro-Ávila, S.; Carrera-Figueiras, C. Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic-wastewater treatment. J. N. Mater. Electrochem. Syst. 2010, 13, 1–6. [Google Scholar]
- Michaelidou, U.; Ter Heijne, A.; Euverink, G.J.W.; Hamelers, H.V.; Stams, A.J.; Geelhoed, J.S. Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl. Environ. Microbiol. 2011, 77, 1069–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.F.; Zhang, F.; Huang, B.C.; Yu, H.Q. Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J. Clean. Prod. 2019, 229, 412–419. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Mohsennia, M.; Pazouki, M. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Bioprocess. Biosyst. Eng. 2017, 40, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Benetton, X.; Srikanth, S.; Satyawali, Y.; Vanbroekhoven, K.; Pant, D. Enzymatic electrosynthesis: An overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J. Microb. Biochem. Technol. 2013, 6, 2. [Google Scholar]
- Nancharaiah, Y.; Mohan, S.V.; Lens, P. Metals removal and recovery in bioelectrochemical systems: A review. Bioresour. Technol. 2015, 195, 102–114. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Lalung, J. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. J. Basic Microbiol. 2014, 54, 1279–1287. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Nastro, R.A. Enhanced bioremediation of toxic metals and harvesting electricity through sediment microbial fuel cell. Int. J. Energy Res. 2017, 41, 2345–2355. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, C.; Ni, J.; Zhang, J.; Huang, W. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources 2012, 204, 34–39. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, B.; Li, J.; Lv, Q.; Wang, S.; Gu, Q. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode. J. Power Sources 2017, 359, 379–383. [Google Scholar] [CrossRef]
- Jiang, Y.; Ulrich, A.C.; Liu, Y. Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Bioresour. Technol. 2013, 139, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Habibul, N.; Hu, Y.; Sheng, G.P. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. J. Hazard. Mater. 2016, 318, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Song, H.; Cang, N.; Li, X. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron. 2015, 68, 135–141. [Google Scholar] [CrossRef]
- Kawale, H.D.; Ranveer, A.C.; Chavan, A.R. Electricity generation from wastewater using a microbial fuel cell by using mixed bacterial culture. J. Biochem. Technol. 2017, 7, 1123–1127. [Google Scholar]
- Kabutey, F.T.; Ding, J.; Zhao, Q.; Antwi, P.; Quashie, F.K.; Tankapa, V.; Zhang, W. Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC). Bioelectrochemistry 2019, 128, 241–251. [Google Scholar] [CrossRef]
- Marks, S.; Makinia, J.; Fernandez-Morales, F.J. Performance of microbial fuel cells operated under anoxic conditions. Appl. Energy 2019, 250, 1–6. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Syakir, M.I. A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: Mechanisms and future prospective. Int. J. Energy Res. 2017, 41, 1242–1264. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Khan, M.A.; Siddiqui, M.R. Bioremediation and electricity generation by using open and closed sediment microbial fuel cells. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Logan, B.E. Immobilization of a metal–nitrogen–carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells. ChemSusChem 2016, 9, 2226–2232. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Syakir, M.I. The behaviour of membrane less sediment microbial fuel cell in the terms of bioremediation and power generation. Malays. J. Microbiol. 2018, 14, 108–112. [Google Scholar]
- Liu, Y.; Fan, Y.S.; Liu, Z.M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells. Chem. Eng. J. 2019, 361, 416–427. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Taguchi, K. A disposable water-activated paper-based MFC using dry E. coli biofilm. Biochem. Eng. J. 2019, 143, 161–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, G.; Li, X.; Zhang, W.; Zhang, J.; Ye, J.; Huang, X.; Yu, C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011, 196, 5402–5407. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, E.; Sun, S.; Chen, H.; Chow, A.T. Direct electricity production from subaqueous wetland sediments and banana peels using membrane-less microbial fuel cells. Ind. Crops Prod. 2019, 128, 70–79. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Jiang, Y.; Li, Y.; He, C. Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Appl. Energy 2018, 209, 33–42. [Google Scholar] [CrossRef]
- Tao, H.C.; Li, W.; Liang, M.; Xu, N.; Ni, J.R.; Wu, W.M. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu (II) with electricity generation. Bioresour. Technol. 2011, 102, 4774–4778. [Google Scholar] [CrossRef]
- Tao, H.C.; Liang, M.; Li, W.; Zhang, L.J.; Ni, J.R.; Wu, W.M. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J. Hazard. Mater. 2011, 189, 186–192. [Google Scholar] [CrossRef]
- Ryu, E.Y.; Kim, M.; Lee, S.J. Characterization of microbial fuel cells enriched using Cr (VI)-containing sludge. J. Microbiol. Biotechnol. 2011, 21, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Singhvi, P.; Chhabra, M. Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell. J. Bioremediat. Biodegradation 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Xafenias, N.; Zhang, Y.; Banks, C.J. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanellaoneidensis MR-1 and lactate. Environ. Sci. Technol. 2013, 47, 4512–4520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.; Hu, N. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour. Technol. 2013, 133, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Wang, B.S.; Pan, B.; Chen, Q.Y.; Yan, W. Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl. Energy 2013, 112, 1337–1341. [Google Scholar] [CrossRef]
- Huang, L.; Li, T.; Liu, C.; Quan, X.; Chen, L.; Wang, A.; Chen, G. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour. Technol. 2013, 128, 539–546. [Google Scholar] [CrossRef]
- Abourached, C.; Catal, T.; Liu, H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014, 51, 228–233. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Jin, M.; Kong, F.; Qi, H.; Nan, J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresour. Technol. 2019, 283, 129–137. [Google Scholar] [CrossRef]
- Li, F.; Jin, C.; Choi, C.; Lim, B. Simultaneous Removal And/Or Recovery Of Cr (VI) And Cr (III) Using A Double Mfc Technique. Environ. Eng. Manag. J. 2019, 18, 1–9. [Google Scholar]
- Liu, Y.; Song, P.; Gai, R.; Yan, C.; Jiao, Y.; Yin, D.; Cai, L.; Zhang, L. Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). J. Saudi Chem. Soc. 2019, 23, 338–345. [Google Scholar] [CrossRef]
- Mu, Y.; Rabaey, K.; Rozendal, R.A.; Yuan, Z.; Keller, J. Decolorization of azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 2009, 43, 5137–5143. [Google Scholar] [CrossRef]
- Fu, L.; You, S.J.; Zhang, G.; Yang, F.L.; Fang, X. Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chem. Eng. J. 2010, 160, 164–169. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Lin, J.; Han, S.; Lei, L. Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system. Bioresour. Technol. 2010, 101, 4440–4445. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Li, Y.; Lu, A.; Jin, S.; Quan, C.; Wang, C.; Wang, X.; Zeng, C.; Yan, Y. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour. Technol. 2010, 101, 3500–3505. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Y.; Zhang, M.M.; Chang, C.T.; Ding, Y.; Lin, K.L.; Chiou, C.S.; Hsueh, C.C.; Xu, H. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour. Technol. 2010, 101, 4737–4741. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Bi, Z.; Hou, B.; Cao, Y.; Hu, Y. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res. 2011, 45, 283–291. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Hu, Y.; Hou, B.; Xu, Q.; Zhang, Y.; Li, S. Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnol. Lett. 2012, 34, 2023–2029. [Google Scholar] [CrossRef]
- Fernando, E.; Keshavarz, T.; Kyazze, G. Enhanced bio-decolourisation of acid orange 7 by Shewanellaoneidensis through co-metabolism in a microbial fuel cell. Int. Biodeterioration Biodegradation 2012, 72, 1–9. [Google Scholar] [CrossRef]
- Solanki, K.; Subramanian, S.; Basu, S. Microbial fuel cells for azo dye treatment with electricity generation: A review. Bioresour. Technol. 2013, 131, 564–571. [Google Scholar] [CrossRef]
- Khan, M.Z.; Singh, S.; Sultana, S.; Sreekrishnan, T.R.; Ahammad, S.Z. Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. N. J. Chem. 2015, 39, 5597–5604. [Google Scholar] [CrossRef]
- Oon, Y.L.; Ong, S.A.; Ho, L.-N.; Wong, Y.-S.; Dahalan, F.A.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E.; Nordin, N. Up-flow constructed wetland-microbial fuel cell for azo dye, saline, nitrate remediation and bioelectricity generation: From waste to energy approach. Bioresour. Technol. 2018, 266, 97–108. [Google Scholar] [CrossRef]
- Yu, F.; Wang, C.; Ma, J. Applications of graphene-modified electrodes in microbial fuel cells. Materials 2016, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Shakoori, F.R. Electrochemistry and microbiology of microbial fuel cells treating marine sediments polluted with heavy metals. RSC Adv. 2018, 8, 18800–18813. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, L.; Zularisam, A.; Hai, F.I. Microbial fuel cell is emerging as a versatile technology: A review on its possible applications, challenges and strategies to improve the performances. Int. J. Energy Res. 2018, 42, 369–394. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Do, M.; Ngo, H.; Guo, W.; Liu, Y.; Chang, S.; Nguyen, D.; Nghiem, L.; Ni, B. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci. Total. Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef]
Anode Materials | Surface Area of Electrodes (cm2) | Size of Electrodes (cm2) | Inoculum Source | Power Density (mW/m2) | Reference |
---|---|---|---|---|---|
Kenaf | 2.5 | 0.23 × 1.52 | Domestic sewage | - | [50] |
Compressed milling residue | 10.99 | 0.5 × 3.0 | Anaerobic mix sludge | 532 | [51] |
Bamboo charcoal | 59.21 | 2.4 × 1.57 | Anaerobic mix sludge | 1652 | [52] |
Loofah sponge | 10.99 | 0.5 × 3.0 | Anaerobic sludge | 701 | [53] |
Loofah sponge/PANI | 10.99 | 0.5 × 3.0 | Mix sludge | 2590 | [54] |
Coconut shell/ sewage sludge | 10.99 | 0.5 × 3.0 | Mix sludge | 1069 | [55] |
Barbed chestnut shell | 91 | 2.7 × 2.7 | Mix sludge | 759 | [56] |
Silk cocoon | 7 | - | Mix sludge | 5 | [42] |
Chestnut shells | 125.65 | 0.3 × 66.4 | Anaerobic mix sludge | 850 | [45] |
Onion peels | 7 | 1.0 × 2.0 × 0.5 | Mix sludge | 742 | [57] |
Coffee wastes | 1 | - | Domestic waste | 3927 | [48] |
Type of Material | Electrodes | Size of Anode | Surface Area of Anode | Catalyst | Inoculum Source/ Bacteria | Power Density | Reference | |
---|---|---|---|---|---|---|---|---|
Anode | Cathode | |||||||
Carbon-based | Carbon cloth | Carbon cloth | 2 cm × 2 cm | 4 cm2 | Without catalyst | S. putrefaciens CN32 | 679.7 mW/m2 | [104] |
Composites | rGO/SnO2/Carbon cloth composite | Pt rode | 3 cm × 2 cm | 6 cm2 | Pt | E. coli | 1624 mW/m2 | [105] |
Carbon-based | Graphene | Carbon cloth | - | 4 cm2 | Pt | E. coli | 2850 mW/m2 | [106] |
Composites | r GO/PPy | Carbon paper | 1 cm × 1.5 cm | - | Pt | E. coli | 1068 mW/m2 | [73] |
Carbon-based | Graphene coating on Carbon cloth | Carbon cloth | 1 cm × 2 cm | 4 cm2 | Pt | P. aeruginosa | 52.5 mW/m2 | [107] |
Carbon-based | Graphene oxide modification with carbon paper | Carbon paper | 5 × 3 cm2 | - | - | Anaerobic Sludge | 368 mW/m2 | [108] |
Composite | Polyaniline (PANI) networks onto graphene nanoribbons (GNRs)-coated on carbon paper (CP/GNRs/PANI) | Carbon paper | 2 cm × 2 cm | 4 cm2 | Ti | S. oneidensis MR-1 | 856 mW/m2 | [89] |
Carbon-based | Graphene nanosheet coating on carbon paper | Carbon cloth | - | - | Pt | S. oneidensis MR-1 | 610 mW/m2 | [91] |
Composites | N-doped graphene nanosheets (NGNS) on carbon cloth | Carbon cloth | 1 cm × 1.5 cm | 597 m2/g | Pt | E. coli | 1008 mW/m2 | [109] |
Carbon-based | Graphene oxide | Carbon paper | 2 cm × 1cm | - | Ti | S. oneidensis MR-1 | 102 mW/m2 | [90] |
Carbon-based | 3D-Graphene | Carbon cloth | 0 mm × 5 mm (diameter × thickness) | 9.41 m2 | Pt | E. coli | 1516 ± 87 mW/m2 | [86] |
Composites | Graphene/PPy | Carbon cloth | - | 136 g/m2 | Without catalyst | S. oneidensis MR-1 | 145 mW/m2 | [110] |
Carbon-based | Carbon cloth | Carbon cloth | - | 6 cm2 | Without catalyst | Wastewater | 1292±69 mW/m2 | [27] |
Carbon-based | Glassy carbon | Carbon cloth | 1.7cm × 1.8 cm | 7 cm2 | Pt | Anaerobic sludge | 1905 mW/m2 | [111] |
Composite | Graphene powder/ Polytetrafluoroethylene on Carbon cloth | Carbon cloth | 4 × 4 cm2 | - | Pt | Anaerobic pre-treated sludge | 0.329 mW/m2 | [112] |
Carbon-based | Carbon brush | Carbon cloth with gas diffusion layers | 2.5 cm × 2.5 cm | 16 cm2 | Ti | Sludge | 4.25 mW/m2 | [113] |
Carbon-based | r-GO sheets/ carbon cloth | carbon cloth | - | 4.5 cm2 | Pt | Anaerobic sludge | 2.5 W/m3 | [114] |
Composite | TiO2 and r GO composite | Carbon fiber/brush | 1 cm × 1 cm | Anode projected surface area 1 cm2 | Ti | S. putrefaciens CN32 | 3169 mW/m2 | [115] |
Carbon-based | Graphite brush | Carbon cloth | 3 cm × 2cm | 8 cm2 | Pt | Native wastewater | 1280 mW/m2 | [116] |
Carbon-based | Carbon felt | Carbon fiber felt | 2.5 × 2.5 cm | 2.5 cm2 | Pt | Anaerobic sludge | 784 mW/m2 | [117] |
Composites | Polypyrrole/ graphene oxide | Carbon felt | 3.0 cm × 2.0 cm × 0.5 cm | - | Pt | S. oneidensis | 1326 mWm−2 | [118] |
Carbon-based + Polymer composite | RGO/ Carbon cloth-PANI | Carbon felt | 1.8 cm × 1.8 cm | - | Pt | Anaerobic Sludge | 1390 mWm−2 | [119] |
Composites | Graphene/Au composite | Carbon paper | - | 6 cm2 | Pt | S. oneidensis MR-1 | 508 mW/m2 | [120] |
Carbon-based | Graphene oxide wit CNT | Carbon cloth | - | - | Pt | E. coli | 434 mWm−2 | [121] |
Carbon-based | Non-wet-proof carbon paper | Non-wet-proof carbon paper | - | 10 cm2 | Pt | Mixed community | 188 mWm−2 | [122] |
Carbon-based | Carbon cloth /CNTs | Carbon cloth/CNTs | 3cm × 6 cm | - | Pt | Domestic wastewater - acetate | 65mW/m2 | [123] |
Carbon-based | Carbon paper | Carbon paper | 2.5 cm × 4.5 cm | 22.5 cm2 | Pt | Primary clarifier overflow | 600mW/m2 (anode area) | [7] |
Composites | Graphite plates | Platinum meshes | - | 155 cm2 | - | Shewanellaoneidensi | 1410 mW/m2 | [124] |
Carbon-based | Carbon mesh | Carbon mesh | 7 cm2 | - | Pt | Preacclimated bacteria from an active MFC | 893 mW/m2 | [125] |
Carbon-based | Activated carbon cloth | Graphite foil | - | 1.5 cm2 in projected area | Pt | D. desulfuricans strain | 0.51 mW/cm2 | [20] |
Composites | Polypyrrole coating on carbon cloth | Granular activated carbon | Anode chamber: 450 mL, wet volume: 250 mL | - | Pt | Domestic wastewater | 5 W/m3 | [126] |
Metal | Stainless steel | Stainless steel | 20 × 30 cm, | 0.12 m2 | Pt | Marine sediments | 23 mW/m2 | [127] |
Carbon-based | Non-wet proofed carbon cloth | Wet proofed carbon cloth | - | 7 cm2 | Pt | Domestic wastewater | 766 mW/m2 | [128] |
Composites | Stainless Steel Mesh coated with Carbon cloth | Carbon black | - | 7 cm2 | Pt | Domestic wastewater | 1610 ± 56 mW/m2 | [129] |
Carbon-based | Plain Carbon paper | Carbon paper | 2.5 × 4.5 cm | - | Pt | Sediment sludge | 33 mW/m2 | [130] |
Carbon-based | Granular graphite | Granular graphite | Granular diameters: 1.5–5 mm | 817 m2 | Pt | Mixture of sediment, aerobic and anaerobic sludge | 8 W/m3 | [131] |
Carbon-based | Granular graphite | Graphite felts | 40 mL | - | Pt | Mixture of sediment, aerobic and anaerobic sludge | 83 ± 11 W/m3 | [132] |
Carbon-based | Graphite plate | Graphite fiber brushes | 1.2 cm × 4.6 cm × 4 cm | 28 cm2 | Pt | Aerobic sludge | 68.4 W/m3 | [133] |
Metal and metal oxide | Ti/TiO2 | Pt meshes | - | - | Pt | Swamp sediments | 2317 W/m3 | [134] |
Metal and metal oxide | Titanium rod | graphite felt | 20 mm | 20 ± 1 cm2 | Pt | Pre-acclimated bacteria | - | [135] |
Composite | Zero-dimension nitrogen-doped carbon dots modification with carbon paper | Carbon paper | 2.5 cm2 × 2.5 cm2 | - | Pt | Pseudomonas | 0.32 mW/m2 | [136] |
Composites | Nickel foam/CNTs/PANI | carbon cloth | - | 1 cm2 of anode surface-area | Without catalyst | Shewanella Sp. | 113 W/m3 | [137] |
Metal and metal oxide | Titanium | - | 2 cm × 2 cm | - | Pt | G. sulfurreducens | - | [138] |
Type of Pollutants | Electrodes | Target Analytes | Inoculation Source | Pollutant Removal (%) | Power Density | Reference | |
---|---|---|---|---|---|---|---|
Anode | Cathode | ||||||
Metal-based Water Pollutant | Graphite felt | Graphite plate | Cu2+ | Anaerobic sludge | 70 | 314 mW/m3 | [158] |
Graphite plate | Graphite felt | CuSO4/CuO | Anaerobic sludge | >99 | 314 mW/m3 | [159] | |
Graphite felts | Graphite felts | Cr (VI) | Actinobacteria, Β-Proteobacteria, | 5 mg/L with 93 25 mg/L with 61 | - | [160] | |
Carbon fiber felt | Carbon fiber felt | Cr (VI) | Anaerobic sludge | 75.4 ± 1.9 | 970.2 ± 60.5 mW/m2 | [142] | |
Carbon fiber felt | Carbon fiber felt | V(V) | Anaerobic sludge | 67.9 ± 3.1 | 970.2 ± 60.5 mW/m2 | [142] | |
Carbon brush | Carbon cloth | Ag+ ions | Sludge mixture | 99.91 | 4.25 W/ m2 | [142] | |
Activated charcoal | Activated charcoal | Cr (VI) | Algae biomass | 98 | 207 mW/m2 | [161] | |
Graphite felt | Graphite rod | Cr (VI) | Shewanella oneidensis MR-1 | 67 | 32.5 mW/m2 | [162] | |
Carbon cloth | Carbon cloth with Pt coating. | Oil sands tailings | Oil sands tailings affected water | 97.8 Se, 96.8 Ba, 77.1 Mo, 32.5 Pb | 392 mW/m2 | [144] | |
Carbon brush | Carbon cloth | Au3+ | Tetrachloroaurate wastewater | 99.89 ± 0.00 | 6.58 W/m2 | [163] | |
Carbon cloth | Graphite | Ag+ | NH3 chelated silver waste water | 99.9 | 317 mW/m2 | [164] | |
Graphite felt | Graphite felt | Co | Lithium cobalt oxide Solution | 62.5 ± 1.8 | 298 ± 31 mW/m3 | [165] | |
Carbon cloth (no wet proofing) | carbon cloth (30% wet proofing) | Zn | Sewage sludge | 90 | 3.6 W/m2 | [166] | |
Carbon fiber felt | Carbon fiber felt | V(V) | Dysgonomonas and Klebsiella | 60.7 | 529 ± 12 mW /m2 | [143] | |
Carbon brush | Reduced Graphene oxide | Cu2+ | Geobacter and Pseudomonas, | 98 | 0.95 W /m2 | [167] | |
Carbon felt | Carbon felt | Cr (VI) | Shewanelladecolorationis S12, K. pneumonia | 99.9 | 52.1 mW/cm2 | [168] | |
Graphite plate | Graphite plate | Platinum (Pt) | Anaerobic sludge bed | 90 | 844.0 mW/ m2 | [169] | |
Dyes-based Water Pollutant | Graphite rod | Graphite rod | Acid orange 7 | Microbial consortium | 78 | 0.31 ± 0.03 W/m3 | [170] |
Granular graphite | Spectrographic pure graphite | Amaranth | - | 82.59 | 137.37 mW/m2 | [171] | |
Plain carbon felts | Carbon felt | Congo red | Anaerobic sludge | 86.4 | 400 mW/m2 | [172] | |
Graphite felt | Carbon paper | Congo red | Anaerobic sludge | 70 | 72.4 mW/m2 | [173] | |
Activated Carbon | Hydrophobic carbon cloth | Model textile dyes | Proteus hauseri | 75 | 103 mW/m2 | [174] | |
Porous carbon paper | Porous carbon paper | Active brilliant red X-3B | Aerobic sludges | 90 | 213.93 mW/m2 | [175] | |
Plain carbon papers (non-wet proofed) | Carbon paper (wet-proofed) | Congo Red | Culture of aerobic and sludge | 85 | 107 mW/m2 | [176] | |
Carbon cloth | Carbon cloth | Acid orange 7 | Shewanellaoneidensis | >98 | - | [177] | |
Graphite-granules | Graphite-granules | Azo dye | Anaerobic sludge | 85 | 34.77 mW/m2 | [178] | |
Activate carbon | Stainless steel mesh | Azo dye | Concentrated anaerobic sludge | 96.5 | 0.852 W/m3, | [144] | |
Graphite rods | Graphite rods | Acid navy blue R | Anaerobic sludge | - | 0.125 mW/c m2 | [179] | |
Porous carbon cloth | Porous carbon cloth | Thionine-based textile Dyes | Proteus hauseri | 50 | 83.4 mW/m2 | [42] | |
Unpolished graphite | Rutile– coated graphite cathode | Methyl orange | Anaerobic sludge | 73.4 | 0.13 ± 0.03 mW/m2 | [147] | |
Carbon felt | Carbon felt | Azo dye | Mixed-culture sludge | 94 | 8.67 mW/m2 | [180] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. https://doi.org/10.3390/ma13092078
Yaqoob AA, Mohamad Ibrahim MN, Rafatullah M, Chua YS, Ahmad A, Umar K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials. 2020; 13(9):2078. https://doi.org/10.3390/ma13092078
Chicago/Turabian StyleYaqoob, Asim Ali, Mohamad Nasir Mohamad Ibrahim, Mohd Rafatullah, Yong Shen Chua, Akil Ahmad, and Khalid Umar. 2020. "Recent Advances in Anodes for Microbial Fuel Cells: An Overview" Materials 13, no. 9: 2078. https://doi.org/10.3390/ma13092078
APA StyleYaqoob, A. A., Mohamad Ibrahim, M. N., Rafatullah, M., Chua, Y. S., Ahmad, A., & Umar, K. (2020). Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials, 13(9), 2078. https://doi.org/10.3390/ma13092078