Portland Cement/Acrocomia Aculeata Endocarp Bricks: Thermal Insulation and Mechanical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzo, J.; Borrachero, M.V.; Soriano, L.; Paya, J.; Tashima, M.M. Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars. Constr. Build. Mater. 2015, 94, 670–677. [Google Scholar] [CrossRef]
- Onesippe, C.; Coutrin, N.P.; Toro, F.; Delvasto, S.; Bilba, K.; Arsene, M.A. Sugar Cane bagasse fibers reinforced cement composites: Thermal considerations. Compos. Part A 2010, 41, 549–556. [Google Scholar] [CrossRef]
- Rodrigues, C.S.; Ghavami, K.; Stroeven, P. Rice husk ash as a supplementary raw material for the production of cellulose-cement composite with improved performance. Waste Biomass Valorization 2010, 1, 241–249. [Google Scholar] [CrossRef]
- Sathiparan, N.; Zoysa, T.H.S.M. The effects of using agricultural waste as partial substitute for sand in cement blocks. J. Build. Eng. 2018, 19, 216–226. [Google Scholar] [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 8491:2012 Tijolo de Solo-Cimento: Requisitos; ABNT: Rio de Janeiro, Brazil, 2012; p. 9. [Google Scholar]
- Amaral, M.C.; Holanda, J.N.F. Application of sugarcane bagasse ash in the production of low cost soil-cement brick. Adv. Environ. Res. 2017, 6, 255–264. [Google Scholar]
- Blankenhorn, P.R.; Labosky PJr DiCola, M.; Stover, L.R. Compressive strength of hardwood-cement composite. For. Prod. J. 1994, 44, 1–6. [Google Scholar]
- Nardi, I.; Rubeis, T.; Buzzi, E.; Sfarra, S.; Ambrosini, D.; Paoletti, D. Modeling and Optimization of the Thermal Performance of a Wood-Cement Block in a Low-Energy House Construction. Energies 2016, 9, 677. [Google Scholar] [CrossRef]
- Rencoret, J.; Kim, H.; Evaristo, A.B.; Gutierrez, A.; Ralph, J.; Del Rio, J.C. Variability in Lignin Composition and Structure in Cell Walls of Different Parts of Macaúba (Acrocomia aculeata) Palm Fruit. J. Agric. Food Chem. 2018, 66, 138–153. [Google Scholar] [CrossRef]
- Rettore, R.P.; Martins, H. Produção de Combustíveis Líquidos a Partir de Óleos Vegetais; Vol. 1 Estudo das oleaginosas nativas de Minas Gerais; CETEC: Belo Horizonte, Brazil, 1983. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR NM 248:2003 Agregados—Determinação da Composição Granulométrica; ABNT: Rio de Janeiro, Brazil, 2011; p. 6. [Google Scholar]
- Dantas, V.B.; Gomes, U.U.; Vital, A.B.; Marinho, G.S.; Silva, A.S. Characterization and Granulometric Correction Soil for the Production of Soil-Cement Blocks for Two Method, Particle Size and X-ray Florescence to be Inserted in Phase Change Materials (PCMS). Mater. Sci. Forum 2014, 798–799, 355–359. [Google Scholar] [CrossRef]
- Zziwa, A.; Kizito, S.; Banana, A.Y.; Kaboggoza, J.R.S.; Kambugu, R.K.; Ssremba, O.E. Production of composite bricks from sawdust using Portland cement as a binder. Ugnada J. Agric. Sci. 2006, 12, 38–44. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 12024:2012 Tijolo de Solo-Cimento: Moldagem e Cura de Corpos de Prova Cilíndricos—Procedimento; ABNT: Rio de Janeiro, Brazil, 2012; p. 4. [Google Scholar]
- Zanetti, T.C.; Cabral, J.S. Calculation of an optical setup for a LIBS system. J. Exp. Tech. Instrum. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Menegatti, C.R.; Nicolodelli, G.; Senesi, G.S.; Silva, O.A.; Filho, H.J.I.; Boas, P.R.V.; Marangoni, B.S.; Milori, D.M.B.P. Semiquantitative analysis of mercury in landfill leachates using double-pulse laser-induced breakdown spectroscopy. Appl. Opt. 2017, 56, 3730–3735. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, B.S.; Silva, K.S.G.; Nicolodelli, G.; Senesi, G.S.; Cabral, J.S.; Villas-Boas, P.R.; Silva, C.S.; Teixeira, P.C.; Nogueira, A.R.A.; Benites, V.M.; et al. Phosphorous quantification in fertilizers using laser induced breakdown spectroscopy (LIBS): A methodology of analysis to correct physical matrix effects. Anal. Methods 2016, 8, 78–82. [Google Scholar] [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 8492:2012 Tijolo de Solo-Cimento: Análise Dimensional, Determinação de Resistência à Compressão e de Absorção de Água; ABNT: Rio de Janeiro, Brazil, 2012; p. 4. [Google Scholar]
- Clark, W.T.; Powell, R.W. Measurement of thermal conduction by the thermal comparator. J. Sci. Instruments. 1962, 39, 545551. [Google Scholar] [CrossRef]
- Rousan, A.A.; Roy, D.M. A thermal comparator method for measuring thermal conductivity of cementitious materials. Ind. Eng. Chem. Prod. Res. Dev. 1982, 22, 349–351. [Google Scholar] [CrossRef]
- Pakhomov, V.I.; Goryunov, A.V.; Pakhomov, P.V.; Chibiskova, N.T. On the structure of alpha-SiO2 crystals doped with Fe3+. Zhurnal Neorganicheskoi Khimii. 1993, 38, 1–8. [Google Scholar]
- Brasileiro, G.A.M.; Vieira, J.A.R.; Barreto, L.S. Use of coir pith particles in composites with Portland cement. J. Environ. Manag. 2013, 131, 228–236. [Google Scholar] [CrossRef]
- Saw, K.; Sarkhel, G.; Choudhury, A. Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability. Appl. Surf. Sci. 2010, 257, 3763–3769. [Google Scholar] [CrossRef]
- Hassan, M.; Khatib, J.M.; Mangat, P.S.; Naseef, A.; Gardiner, P.H.E. FTIR and XRD characterized lime stabilized lead contaminated soil. In Proceedings of the 2nd International Conference on Environmental, Chemistry and Biology, Singapore, 24–25 August 2013; Volume 59, pp. 102–106. [Google Scholar]
- Narendar, R.; Dasan, K.P. Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Compos. Part B Eng. 2014, 56, 770–779. [Google Scholar] [CrossRef]
- Luduena, L.N.; Vecchio, A.; Stefani, P.M.; Alvarez, V.A. Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fiber Polym. 2013, 14, 1118–1127. [Google Scholar] [CrossRef]
- Toledano, A.; Serrano, L.; Garcia, A.; Mondragon, I.; Labidi, J. Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem. Eng. J. 2009, 157, 93–99. [Google Scholar] [CrossRef]
Chemical Compound | Assignments | Wavenumber (cm−1) |
---|---|---|
Lignin | C=O axial deformation | 1724 |
1708 | ||
C=C and C=O stretching | 1600 | |
C–H bending | 893 | |
752 | ||
Hemi-Cellulose and Cellulose | C=C and C=O stretching | 1509 |
C-H scissoring | 1371 | |
C–O axial deformation | 1238 | |
1212 | ||
C–O–C asymmetric stretch | 1160 | |
C–O stretching | 1100 | |
1034 | ||
C–O asymmetric stretch | 1410 | |
Portland cement composite | C–O stretching | 1100 |
C–S–H asymmetric stretch | 967 | |
C–O asymmetric stretch in Calcium Carbonate; Si–O stretching | 915–775 |
AE in PC/AE Samples (wt%) | Sample Age/Compressive Strength (MPa) | ||
---|---|---|---|
7 Days | 14 Days | 28 Days | |
0 | 6.10 | 7.75 | 8.85 |
5 | 5.35 | 5.20 | 5.00 |
10 | 3.25 | 3.85 | 3.70 |
15 | 1.80 | 2.52 | 1.90 |
20 | 1.08 | 1.70 | 1.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvani, C.C.; Goncalves, A.-M.B.; Silva, M.J.; Oliveira, S.L.; Marangoni, B.S.; Reis, D.D.d.; Cena, C. Portland Cement/Acrocomia Aculeata Endocarp Bricks: Thermal Insulation and Mechanical Properties. Materials 2020, 13, 2081. https://doi.org/10.3390/ma13092081
Calvani CC, Goncalves A-MB, Silva MJ, Oliveira SL, Marangoni BS, Reis DDd, Cena C. Portland Cement/Acrocomia Aculeata Endocarp Bricks: Thermal Insulation and Mechanical Properties. Materials. 2020; 13(9):2081. https://doi.org/10.3390/ma13092081
Chicago/Turabian StyleCalvani, Camila C., Além-Mar B. Goncalves, Michael J. Silva, Samuel L. Oliveira, Bruno S. Marangoni, Diogo D. dos Reis, and Cicero Cena. 2020. "Portland Cement/Acrocomia Aculeata Endocarp Bricks: Thermal Insulation and Mechanical Properties" Materials 13, no. 9: 2081. https://doi.org/10.3390/ma13092081
APA StyleCalvani, C. C., Goncalves, A.-M. B., Silva, M. J., Oliveira, S. L., Marangoni, B. S., Reis, D. D. d., & Cena, C. (2020). Portland Cement/Acrocomia Aculeata Endocarp Bricks: Thermal Insulation and Mechanical Properties. Materials, 13(9), 2081. https://doi.org/10.3390/ma13092081