Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monolayer NiFe-LDH Nanosheets (Denoted as NiFe-Mono)
2.3. Synthesis of Monolayer Co-Containing NiFeCo-LDH Nanosheets (Denoted as NiFeCo-Mono)
3. Results and Discussion
3.1. Synthesis and Morphology Characterization of Monolayer NiFeCo-LDH Nanosheets
3.2. Electrocatalytic Water Splitting by Monolayer NiFeCo-LDH
3.3. Discussion on the Relationship between the Structure and the Performance of NiFeCo-Mono
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, B.M.; Gray, H.B.; Müller, A.M. Earth-abundant heterogeneous water oxidation catalyst. Chem. Rev. 2016, 116, 14120–14136. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, R.; Ma, R.F.; Xie, Z.D.; Su, F.; Gong, Y.F.; Mu, Z.M.; Li, L.H.; Wei, Y.; Wan, Q. Branched CdO/ZnO Core/Shell Heterogeneous Structure and Its Enhanced Photoelectrocatalytic Performance. ACS Omega 2018, 3, 11517–11525. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, C.; Lyu, M.; Lin, Y.; Cai, W.; Huang, P.; Tong, W.; Zou, Y.; Xie, Y. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew. Chem. Int. Ed. 2015, 54, 11231–11235. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, W.W.; Zhu, W.; Yang, Q.; Lei, X.D.; Liu, J.F.; Li, Y.P.; Sun, X.M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Xu, Y.D.; Liu, R.P.; Ma, L.; Li, D.; Yang, Y.K.; Dai, G.Z.; Wan, Q. Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Appl. Phys. Mater. Sci. Process. 2017, 123, 6. [Google Scholar] [CrossRef]
- Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M.A.; Fang, X.Y.; Xiang, X.; Ji, S.F.; Yan, D.P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVPheterostructures towards efficient, pH-universal electrocatalytical nitrogenreduction reaction to ammonia. Appl. Catal. B Environ. 2020, 265, 10. [Google Scholar] [CrossRef]
- Kim, I.Y.; Jo, Y.K.; Lee, J.M.; Wang, L.; Hwang, S.-J. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. J. Phys. Chem. L. 2014, 5, 4149–4161. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, F.; Liu, R.; Zhu, W.; Yao, L. Mechanochemistry in cancer cell metastasis. Chinese Chem. L. 2019, 30, 7–14. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, S.; Lei, F.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12. [Google Scholar] [CrossRef]
- Tan, L.; Xu, S.-M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; et al. Highly selective photoreduction of CO2 with suppressing H2evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. Int. Ed. 2019, 58, 11860–11867. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Oaki, Y.; Imai, H. Monolayered nanodots of transition metal oxides. J. Am. Chem. Soc. 2013, 135, 4501–4508. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layerand multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Gao, S.; Xie, Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem. Soc. Rev. 2014, 43, 530–546. [Google Scholar] [CrossRef]
- Nasseem, S.; Gevers, B.R.; Labuschagne, F.; Leuteritz, A. Preparation of photoactive transition-metal layered double hydroxides (LDH) to replace dye-sensitized materials in solar cells. Materials 2020, 13, 4384. [Google Scholar] [CrossRef]
- Li, Z.; Duan, H.; Shao, M.; Li, J.; O’Hare, D.; Wei, M.; Wang, Z.L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chemistry 2018, 4, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef]
- Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn layered double hydroxides as high-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911. [Google Scholar] [CrossRef]
- Li, P.; Duan, X.; Kuang, Y.; Li, Y.; Zhang, G.; Liu, W.; Sun, X. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, L.; Shearer, M.J.; Sheng, H.; Li, W.; Chen, J.; Xiao, P.; Zhang, Y.; Hamers, R.J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Lindstrom, M.L.; Gakhar, R.; Raja, K.; Chidambaram, D.J. Facile synthesis of an efficient Ni–Fe–Co based oxygen evolution reaction electrocatalyst. Electrochem. Soc. 2020, 167, 046507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K.M.; Zhang, B.J. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Am. Chem. Soc. 2018, 140, 3876. [Google Scholar] [CrossRef] [PubMed]
- Thenuwara, A.C.; Attanayake, N.H.; Yu, J.; Perdew, J.P.; Elzinga, E.J.; Yan, Q.; Strongin, D.R. Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction. J. Phys. Chem. B 2018, 122, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS Catal. 2020, 10, 5179–5189. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Cheng, H.; Liu, J.; Shao, M.; Wei, M.; Evans, D.G.; Zhang, H.; Duan, X. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Wang, C.J.; Wu, Y.A.; Jacobs, R.M.J.; Warner, J.H.; Williams, G.R.; O’Hare, D. Reverse micelle synthesis of Co-Al LDHs: Control of particle size and magnetic properties. Chem. Mater. 2011, 23, 171–180. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, R.; Li, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880–15893. [Google Scholar] [CrossRef]
- Yu, W.; Li, H.; Du, N.; Hou, W. Estimation of surface free energy and solubility parameters of Mg–Al layered double hydroxides. J. Colloid Interf. Sci. 2019, 546, 361–370. [Google Scholar] [CrossRef]
- Yu, W.; Du, N.; Gu, Y.; Yan, J.; Hou, W. Specific ion effects on the colloidal stability of layered double hydroxide single-layer nanosheets. Langmuir 2020, 36, 6557–6568. [Google Scholar] [CrossRef]
- Li, L.; Ma, R.; Ebina, Y.; Fukuda, K.; Takada, K.; Sasaki, T. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J. Am. Chem. Soc. 2007, 129, 8000–8007. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 2017, 56, 5867–5871. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hao, X.; Bai, S.; Zhao, Y.; Song, Y. Controllable synthesis and scale-up production prospect of monolayer layered double hydroxide nanosheets. Acta Phys. Chim. Sin. 2020, 36, 1912005. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Wang, Q.; Gao, W.; Wang, C.J.; Wei, M.; Evans, D.G.; Duan, X.; O’Hare, D. NiTi-Layered double hydroxides nanosheets asefficient photocatalysts for oxygen evolution fromwater using visible light. Chem. Sci. 2014, 5, 951–958. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.G.; Wang, H.L.; Liang, Y.Y.; Wu, J.Z.; Zhou, J.G.; Wang, J.; Regier, T.; Wei, F.; Dai, H.J. An advanced Ni−Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, M.; Wang, Q.; Buffet, J.-C.; O’Hare, D. Synthesis and characterisation of aqueous miscible organic-layered double hydroxides. J. Mater. Chem. A 2014, 2, 151021703585. [Google Scholar] [CrossRef]
- Dionigi, F.; Strasser, P. NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, S.M.; Xu, Y.Q.; Tan, L.; Wang, X.; Zhao, Y.F.; Duan, H.H.; Song, Y.F. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Martin, B.R.; Clearfield, A.; Luo, Z.; Sun, L. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Q.; O’Hare, D.; Sun, L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.; Clearfield, A.; Sims, J.E.; Speiegle, M.T.; Suib, S.L.; Sun, L. Synthesis of layered double hydroxide single-layer nanosheets in formamide. Inorg. Chem. 2016, 55, 12036–12041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, D.; Shi, Y.; Sun, Z.; Liu, R. Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction. Materials 2021, 14, 207. https://doi.org/10.3390/ma14010207
Li Y, Zhao D, Shi Y, Sun Z, Liu R. Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction. Materials. 2021; 14(1):207. https://doi.org/10.3390/ma14010207
Chicago/Turabian StyleLi, Ye, Dan Zhao, Yue Shi, Zhicheng Sun, and Ruping Liu. 2021. "Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction" Materials 14, no. 1: 207. https://doi.org/10.3390/ma14010207
APA StyleLi, Y., Zhao, D., Shi, Y., Sun, Z., & Liu, R. (2021). Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction. Materials, 14(1), 207. https://doi.org/10.3390/ma14010207