Study of the Solid-State Synthesis of Nickel Ferrite (NiFe2O4) by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Effect of Temperature
3.2. Effect of the Duration of the Thermal Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atiq, S.; Majeed, M.; Ahmad, A.; Abbas, S.K.; Saleem, M.; Riaz, S.; Naseem, S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017, 43, 2486–2494. [Google Scholar] [CrossRef]
- Mathe, V.L.; Kamble, R.B. Electrical and dielectric properties of nano crystalline Ni–Co spinel ferrites. Mater. Res. Bull. 2013, 48, 1415–1419. [Google Scholar] [CrossRef]
- Ali, R.; Khan, M.A.; Manzoor, A.; Shahid, M.; Haider, S.; Malik, A.S.; Sher, M.; Shakir, I.; Warsi, M.F. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials. J. Magn. Magn. Mater. 2017, 429, 142–147. [Google Scholar] [CrossRef]
- Chen, L.; Dai, H.; Shen, Y.; Bai, J. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloy. Compd. 2010, 491, L33–L38. [Google Scholar] [CrossRef]
- Rana, S.; Rawat, J.; Misra, R.D.K. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater. 2005, 1, 691–703. [Google Scholar] [CrossRef]
- Gardey, S. Etude de la Corrosion Généralisée des Alliages 600, 690 et 800 en Milieu Primaire. Contribution à la Compréhension des Mécanismes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1998. [Google Scholar]
- Marchetti-Sillans, L. Corrosion Généralisée des Alliages à Base Nickel en Milieu Aqueux à Haute Température: Apport à la Compréhension des Mécanismes. Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne, France, 2007. [Google Scholar]
- Carrette, F. Relâchement des Produits de Corrosion des Tubes en Alliage 690 de Générateur de Vapeur du Circuit Primaire des Réacteurs à Eau Pressurisée. Ph.D. Thesis, National Polytechnic Institute of Toulouse (INPT), Toulouse, France, 2002. [Google Scholar]
- Lister, D.H. Understanding and Mitigating Corrosion in Nuclear Reactor Systems. In Nuclear Corrosion Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2012; pp. 57–74. [Google Scholar] [CrossRef]
- Laghoutaris, P. Corrosion sous Contrainte de l’Alliage 600 en Milieu Primarie des Réacteurs à Eau Sous Pression: Apport à la Compréhension des Mecanismes. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 2009. [Google Scholar]
- Bindra Narang, S.; Pubby, K. Nickel Spinel Ferrites: A Review. J. Magn. Magn. Mater. 2020, 167163. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, C.-K.; Katoh, S.; Murakami, R. Microwave-hydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders. J. Alloy. Compd. 2001, 325, 276–280. [Google Scholar] [CrossRef]
- Wolska, E.; Wolski, W.; Kaczmarek, J.; Riedel, E.; Prick, D. Defect structures in cadmium-nickel ferrites. Solid State Ion. 1992, 51, 231–237. [Google Scholar] [CrossRef]
- Regazzoni, A.E.; Matijević, E. Formation of uniform colloidal mixed cobalt—Nickel ferrite particles. Colloids Surfaces 1983, 6, 189–201. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G.; Pludons, A.; Lagzdina, S. Characterization of sol–gel auto-combustion derived spinel ferrite nano-materials. Energetika 2010, 56, 254–259. [Google Scholar]
- Win, O.; Khaing, L.L.; Tun, T. Study on Preparation and Structural Characterization of Nickel Ferrites (NiFe2O4). Hinthada University Research Journal 2016, 7, 8. [Google Scholar]
- Azadmanjiri, J.; Seyyed Ebrahimi, S.A. The effects of pH and citric acid concentration on the characteristics of nanocrystalline NiFe2O4 powder synthesized by a sol-gel autocombustion method. Phys. Met. Met. 2006, 102, S21–S23. [Google Scholar] [CrossRef]
- Yearian, H.J.; Kortright, J.M.; Langenheim, R.H. Lattice Parameters of the FeFe2-xCrxO4 Spinel System. J. Chem. Phys. 1954, 22, 1196–1198. [Google Scholar] [CrossRef]
- Pickart, S.J.; Nathans, R. Neutron Study of the Crystal and Magnetic Structures of MnFe2-tCrtO4. Phys. Rev. 1959, 116, 317–322. [Google Scholar] [CrossRef]
- Allen, G.C.; Jutson, J.A.; Tempest, P.A. Characterisation of manganese-chromium-iron spinel-type oxides. J. Nucl. Mater. 1988, 160, 34–47. [Google Scholar] [CrossRef]
- Mittal, V.K.; Bera, S.; Nithya, R.; Srinivasan, M.; Velmurugan, S.; Narasimhan, S. Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 2004, 335, 302–310. [Google Scholar] [CrossRef]
- Khumsa-Ang, K. The Deposition of Nickel Ferrite on Alloy-800 Surfaces During Subcooled Boiling Heat Transfer: Mechanisms of Removal. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 2011. [Google Scholar]
- McLaughlin, M. Investigations of Corrosion-Product Behavior Under a Variety of Nuclear Reactor Coolant. Master’s Thesis, University of New Brunswick, Fredericton, NB, Canada, 2016. [Google Scholar]
- Chavan, P.; Naik, L.R.; Belavi, P.B.; Chavan, G.; Ramesha, C.K.; Kotnala, R.K. Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites. J. Electron. Mater. 2017, 46, 188–198. [Google Scholar] [CrossRef]
- Salazar-Tamayo, H.; García, K.E.; Barrero, C.A. New method to calculate Mössbauer recoilless f-factors in NiFe2O4. Magnetic, morphological and structural properties. J. Magn. Magn. Mater. 2019, 471, 242–249. [Google Scholar] [CrossRef]
- Ali, R.; Khan, M.A.; Mahmood, A.; Chughtai, A.H.; Sultan, A.; Shahid, M.; Ishaq, M.; Warsi, M.F. Structural, magnetic and dielectric behavior of Mg1−xCaxNiyFe2−yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 2014, 40, 3841–3846. [Google Scholar] [CrossRef]
- Deydier de Pierrefeu, L. The Dissolution Behavior of Magnetite Electrodes in High-Temperautre Water. Master’s Thesis, University of New Brunswick, Fredericton, NB, Canada, 2009. [Google Scholar]
- Bish, D.L. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Shebanova, O.; Lazor, P. Raman Spectroscopic Study of Magnetite (FeFe2O4): A New Assignment for the Vibrational Spectrum. J. Solid State Chem. 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Guzonas, D.A.; Rochefort, P.A.; Turner, C.W. Corrosion Product Characterisation by Fibre Optic Raman Spectroscopy. In Proceedings of the 3rd International Steam Generator and Heat Exchanger Conference, Toronto, ON, Canada, 21–24 June 1998; Atomic Energy of Canada Limited: Chalk River, ON, Canada, 1998; p. 12. [Google Scholar]
- Pottker, W.E.; Ono, R.; Cobos, M.A.; Hernando, A.; Araujo, J.; Bruno, A.C.; Lourenço, S.A.; Longo, E.; La Porta, F.A. Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 2018, 44, 17290–17297. [Google Scholar] [CrossRef]
- Shafer, M.W. Preparation and Properties of Ferrospinels Containing Ni3+. J. Appl. Phys. 1962, 33, 1210. [Google Scholar] [CrossRef]
Sample | Reaction Time | Furnace Temperature |
---|---|---|
A_1 | 48 h | 600 °C |
A_2 | 48 h | 800 °C |
A_3 | 48 h | 1000 °C |
A_4 | 72 h | 1000 °C |
A_5 | 96 h | 1000 °C |
Sample | NiO | Fe2O3 | NiFe2O4 |
---|---|---|---|
A_1 | 26% | 36% | 38% |
A_2 | - | 9% | 91% |
Sample | Lattice Parameter (a = b = c) |
---|---|
A_1 | a = 0.8350 |
A_2 | a = 0.8346 |
A_3 | a = 0.8343 |
A_4 | a = 0.8334 |
A_5 | a = 0.8332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherpin, C.; Lister, D.; Dacquait, F.; Liu, L. Study of the Solid-State Synthesis of Nickel Ferrite (NiFe2O4) by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Materials 2021, 14, 2557. https://doi.org/10.3390/ma14102557
Cherpin C, Lister D, Dacquait F, Liu L. Study of the Solid-State Synthesis of Nickel Ferrite (NiFe2O4) by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Materials. 2021; 14(10):2557. https://doi.org/10.3390/ma14102557
Chicago/Turabian StyleCherpin, Chloé, Derek Lister, Frédéric Dacquait, and Lihui Liu. 2021. "Study of the Solid-State Synthesis of Nickel Ferrite (NiFe2O4) by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Raman Spectroscopy" Materials 14, no. 10: 2557. https://doi.org/10.3390/ma14102557
APA StyleCherpin, C., Lister, D., Dacquait, F., & Liu, L. (2021). Study of the Solid-State Synthesis of Nickel Ferrite (NiFe2O4) by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Materials, 14(10), 2557. https://doi.org/10.3390/ma14102557