Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates—A Review
Abstract
:1. Principle of Fuel Cells
2. Bipolar Plates
3. Materials for Bipolar Plates
3.1. Composites Materials
3.2. Metallic Materials
4. Methods of Testing Properties of Metallic Materials
4.1. Electrochemical Testing Methods
4.2. Fuel Cell Test
4.3. Surface Characterization Methods
5. Achieved Results with Metallic Materials
5.1. Uncoated Steel
5.2. Steel Surface Treatment
5.2.1. Surface Treatments Based on Nitrides
5.2.2. Surface Treatment Based on Carbides
5.2.3. Surface Treatment Based on Carbon
5.2.4. Combined Surface Treatments and Coatings
5.2.5. Polymer and Composite Coatings
5.2.6. Other Coatings
5.3. Titanium
5.4. Aluminium
5.5. Other Metals
6. Factors Affecting the Monitoring Characteristics and Parameters of the Bipolar Plate Candidate Materials
6.1. Composition and pH of the Fuel Cell Environment
6.2. Temperature
6.3. Applied Potential
6.4. Exposition Time
6.5. Surface Pretreatment and Choice of Manufacturing Process
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbrevations
ACLE | Silver chloride electrode |
AISI | American Iron and Steel Institute |
ASPA | Active screen plasma alloying |
ASTM | American Society for Testing and Materials |
CAE-PVD | Cathodic arc evaporation physical vapor deposition |
CFUBMSIP | Closed field unbalanced magnetron sputter ion plating |
CSA | Camphorsulfonic acid |
CVD | Chemical vapor deposition |
DCMP | Direct current magnetron sputtering |
DOE | Department of Energy |
EBPVD | Electron-beam physical vapor deposition |
EDM | Electrical discharge machining |
EIS | Electrochemical impedance spectroscopy |
GDL | Gas diffusion layer |
GD-OES | Glow-discharge optical emission spectroscopy |
HEMAA | High energy micro-arc alloying |
HFR | High frequency resistance |
HPPMS | High-power impulse magnetron sputtering |
ICP-AES | Inductively coupled plasma atomic emission spectroscopy |
ICP-MS | Inductively coupled plasma mass spectrometry |
ICR | Interfacial contact resistance |
MEA | Membrane electrode assembly |
PANI | Polyaniline |
PBAIP | Pulsed bias arc ion plating |
PEMFC | Proton exchange membrane fuel cell |
PIRAC | Powder immersion reaction assisted coating |
PpPD | Poly-p-fenylendiamine |
PPY | Polypyrrole |
PVD | Physical vapor deposition |
RH | Relative humidity |
SCE | Saturated calomel electrode |
SEM | Scanning electron microscopy |
SEM/EDS | Scanning electron microscopy/energy dispersive X-ray spectroscopy |
SHE | Standard hydrogen electrode |
TEM | Transmission electron microscopy |
XRD | X-ray diffraction |
References
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrog. Energy 2017, 42, 9135–9148. [Google Scholar] [CrossRef]
- Alo, O.; Otunniyi, I.; Pienaar, H.; Iyuke, S. Materials for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell: Performance Criteria and Current Benchmarks. Procedia Manuf. 2017, 7, 395–401. [Google Scholar] [CrossRef]
- Karimi, S.; Fraser, N.; Roberts, B.; Foulkes, F.R. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Adv. Mater. Sci. Eng. 2012, 2012, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Taherian, R. RETRACTED: A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. J. Power Sources 2014, 265, 370–390. [Google Scholar] [CrossRef]
- Li, X.; Sabir, I. Review of bipolar plates in PEM fuel cells: Flow-field designs. Int. J. Hydrog. Energy 2005, 30, 359–371. [Google Scholar] [CrossRef]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrog. Energy 2010, 35, 3632–3647. [Google Scholar] [CrossRef]
- Daud, W.; Rosli, R.; Majlan, E.; Hamid, S.; Mohamed, R.; Husaini, T. PEM fuel cell system control: A review. Renew. Energy 2017, 113, 620–638. [Google Scholar] [CrossRef]
- Hermann, A.; Chaudhuri, T.; Spagnol, P. Bipolar plates for PEM fuel cells: A review. Int. J. Hydrog. Energy 2005, 30, 1297–1302. [Google Scholar] [CrossRef]
- Feng, K.; Cai, X.; Sun, H.; Li, Z.; Chu, P.K. Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells. Diam. Relat. Mater. 2010, 19, 1354–1361. [Google Scholar] [CrossRef]
- Langemann, M.; Fritz, D.L.; Müller, M.; Stolten, D. Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis. Int. J. Hydrog. Energy 2015, 40, 11385–11391. [Google Scholar] [CrossRef]
- DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (accessed on 30 April 2020).
- Kumar, A.; Ricketts, M.; Hirano, S. Ex situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate. J. Power Sources 2010, 195, 1401–1407. [Google Scholar] [CrossRef]
- Adrianowycz, O.; Norley, J.; Stuart, D.J.; Flaherty, D.W.; Wayne, R.; Williams, W.; Tietze, R.; Nguyen, Y.-L.H.; Zawodzinski, T.; Pietrasz, P. Next Generation Bipolar Plates for Automotive PEM Fuel Cells. In Next Generation Bipolar Plates for Automotive PEM Fuel Cells; Office of Scientific and Technical Information (OSTI): Oak Ridge, Tennessee, 2010; pp. 849–854. [Google Scholar]
- San, F.G.B.; Okur, O. The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int. J. Hydrog. Energy 2017, 42, 23054–23069. [Google Scholar] [CrossRef]
- Kang, K.; Park, S.; Jo, A.; Lee, K.; Ju, H. Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites. Int. J. Hydrog. Energy 2017, 42, 1691–1697. [Google Scholar] [CrossRef]
- André, J.; Antoni, L.; Petit, J.-P. Corrosion resistance of stainless steel bipolar plates in a PEFC environment: A comprehensive study. Int. J. Hydrog. Energy 2010, 35, 3684–3697. [Google Scholar] [CrossRef]
- Tawfik, H.; Hung, Y.; Mahajan, D. Metal bipolar plates for PEM fuel cell—A review. J. Power Sources 2007, 163, 755–767. [Google Scholar] [CrossRef]
- Antunes, R.A.; de Oliveira, M.C.; Ett, G.; Ett, V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J. Power Sources 2011, 196, 2945–2961. [Google Scholar] [CrossRef] [Green Version]
- Radzuan, N.A.M.; Sulong, A.B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 2017, 42, 9262–9273. [Google Scholar] [CrossRef]
- Kuan, H.-C.; Ma, C.-C.M.; Chen, K.H.; Chen, S.-M. Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. J. Power Sources 2004, 134, 7–17. [Google Scholar] [CrossRef]
- Bolouri, A.; Kang, C.G. Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells. Renew. Energy 2014, 71, 616–628. [Google Scholar] [CrossRef]
- Wang, Y.; Northwood, D.O. Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells. Electrochimica Acta 2007, 52, 6793–6798. [Google Scholar] [CrossRef]
- Orsi, A.; Kongstein, O.; Hamilton, P.; Oedegaard, A.; Svenum, I.; Cooke, K. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study. J. Power Sources 2015, 285, 530–537. [Google Scholar] [CrossRef]
- Bi, F.; Li, X.; Yi, P.; Hou, K.; Peng, L.; Lai, X. Characteristics of amorphous carbon films to resist high potential impact in PEMFCs bipolar plates for automotive application. Int. J. Hydrog. Energy 2017, 42, 14279–14289. [Google Scholar] [CrossRef]
- Mendizabal, L.; Oedegaard, A.; Kongstein, O.E.; Lædre, S.; Walmsley, J.; Barriga, J.; Gonzalez, J.J. TaNX coatings deposited by HPPMS on SS316L bipolar plates for polymer electrolyte membrane fuel cells: Correlation between corrosion current, contact resistance and barrier oxide film formation. Int. J. Hydrog. Energy 2017, 42, 3259–3270. [Google Scholar] [CrossRef]
- Mingge, W.; Congda, L.; Tao, H.; Guohai, C.; Donghui, W.; Haifeng, Z.; Dong, Z.; Aiying, W. Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell. Surf. Coat. Technol. 2016, 307, 374–381. [Google Scholar] [CrossRef]
- Hinds, G.; Brightman, E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrog. Energy 2015, 40, 2785–2791. [Google Scholar] [CrossRef]
- Agneaux, A.; Plouzennec, M.H.; Antoni, L.; Granier, J. Corrosion Behaviour of Stainless Steel Plates in PEMFC Working Conditions. Fuel Cells 2006, 6, 47–53. [Google Scholar] [CrossRef]
- Huang, N.; Yu, H.; Xu, L.; Zhan, S.; Sun, M.; Kirk, D.W. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment. Results Phys. 2016, 6, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.J.; Chen, J.; Zeng, C.L.; Li, C.; He, J.J. Electrochemical corrosion characteristics of conducting polypyr-role/polyaniline coatings in simulated environments of a proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2016, 41, 8542–8549. [Google Scholar] [CrossRef]
- Ma, J.J.; Xu, J.; Jiang, S.; Munroe, P.; Xie, Z.-H. Effects of pH value and temperature on the corrosion behavior of a Ta2N nanoceramic coating in simulated polymer electrolyte membrane fuel cell environment. Ceram. Int. 2016, 42, 16833–16851. [Google Scholar] [CrossRef]
- Jin, J.; Zheng, D.; Liu, H. The corrosion behavior and mechanical properties of CrN/Ni P multilayer coated mild steel as bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2017, 42, 28883–28897. [Google Scholar] [CrossRef]
- Huang, N.; Liang, C.; Wang, H.; Xu, L.; Xu, H. Corrosion Behavior of Passivated 316LSS with Ag Coating as PEMFC Bipolar Plate. Int. J. Corros. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Wu, G.; Li, Z.; Cai, X.; Chu, P.K. Corrosion behavior of SS316L in simulated and accelerated PEMFC environments. Int. J. Hydrog. Energy 2011, 36, 13032–13042. [Google Scholar] [CrossRef]
- Dadfar, M.; Salehi, M.; Golozar, M.A.; Trasatti, S. Surface modification of 304 stainless steels to improve corrosion be-havior and interfacial contact resistance of bipolar plates. Int. J. Hydrog. Energy 2016, 41, 21375–21384. [Google Scholar] [CrossRef]
- Jin, J.; Zhu, Z.; Zheng, D. Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2017, 42, 11758–11770. [Google Scholar] [CrossRef]
- Lim, J.W.; Lee, D.; Kim, M.; Choe, J.; Nam, S.; Gil Lee, D. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): Review. Compos. Struct. 2015, 134, 927–949. [Google Scholar] [CrossRef]
- Yoon, W.; Huang, X.; Fazzino, P.; Reifsnider, K.L.; Akkaoui, M.A. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2008, 179, 265–273. [Google Scholar] [CrossRef]
- Rajaei, V.; Rashtchi, H.; Raeissi, K.; Shamanian, M. The study of Ni-based nano-crystalline and amorphous alloy coatings on AISI 304 stainless steel for PEM fuel cell bipolar plate application. Int. J. Hydrog. Energy 2017, 42, 14264–14278. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Hameed, R.A.; El-Khatib, K.; Souaya, E.R. Ni–P and Ni–Co–P coated aluminum alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications. Int. J. Hydrog. Energy 2012, 37, 7677–7688. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, L.; Guo, L.; Tuan, W.-H. Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2010, 35, 3721–3726. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Huang, K. Composite coatings with in situ formation for Fe–Ni–Cr alloy as bipolar plate of PEMFC. Int. J. Hydrog. Energy 2013, 38, 11379–11391. [Google Scholar] [CrossRef]
- Richards, J.; Cremers, C.; Fischer, P.; Schmidt, K. Corrosion Studies on Electro Polished Stainless Steels for the Use as Metallic Bipolar Plates in PEMFC Applications. Energy Procedia 2012, 20, 324–333. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, D. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. Energy 2014, 64, 242–247. [Google Scholar] [CrossRef]
- Wu, B.; Lin, G.; Fu, Y.; Hou, M.; Yi, B. Chromium-containing carbon film on stainless steel as bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 13255–13261. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Hameed, R.A.; El–Khatib, K.; Souaya, E.R. Study of different aluminum alloy substrates coated with Ni–Co–P as metallic bipolar plates for PEM fuel cell applications. Int. J. Hydrog. Energy 2012, 37, 10807–10817. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Maza, M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Sources 2011, 196, 4283–4289. [Google Scholar] [CrossRef]
- Sun, H.; Cooke, K.; Eitzinger, G.; Hamilton, P.; Pollet, B. Development of PVD coatings for PEMFC metallic bipolar plates. Thin Solid Films 2013, 528, 199–204. [Google Scholar] [CrossRef]
- Gabreab, E.M.; Hinds, G.; Fearn, S.; Hodgson, D.; Millichamp, J.; Shearing, P.R.; Brett, D.J. An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells. J. Power Sources 2014, 245, 1014–1026. [Google Scholar] [CrossRef]
- Iversen, A. Stainless steels in bipolar plates—Surface resistive properties of corrosion resistant steel grades during current loads. Corros. Sci. 2006, 48, 1036–1058. [Google Scholar] [CrossRef]
- Brady, M.; Elhamid, M.A.; Dadheech, G.; Bradley, J.; Toops, T.; Meyer, H.; Tortorelli, P. Manufacturing and performance assessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2013, 38, 4734–4739. [Google Scholar] [CrossRef]
- Kumagai, M.; Myung, S.-T.; Kuwata, S.; Asaishi, R.; Yashiro, H. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochim. Acta 2008, 53, 4205–4212. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Dong, H.; Du, S.; Lu, Y.; Ji, X.; Gu, D. Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2017, 42, 2338–2348. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Su, S.-C. Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates. Energy 2018, 159, 440–447. [Google Scholar] [CrossRef]
- Wang, H.-C.; Sheu, H.-H.; Lu, C.-E.; Hou, K.-H.; Ger, M.-D. Preparation of corrosion-resistant and conductive trivalent Cr–C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition. J. Power Sources 2015, 293, 475–483. [Google Scholar] [CrossRef]
- Wind, J.; Späh, R.; Kaiser, W.; Böhm, G. Metallic bipolar plates for PEM fuel cells. J. Power Sources 2002, 105, 256–260. [Google Scholar] [CrossRef]
- Brady, M.; Weisbrod, K.; Paulauskas, I.; Buchanan, R.; More, K.; Wang, H.; Wilson, M.; Garzon, F.; Walker, L. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. Scr. Mater. 2004, 50, 1017–1022. [Google Scholar] [CrossRef]
- Hung, Y.; Tawfik, H.; Mahajan, D. Durability and characterization studies of chromium carbide coated aluminum fuel cell stack. Int. J. Hydrog. Energy 2016, 41, 12273–12284. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Lopez, A.M.; Roda, V.; Martín, J.; Maza, M.; Fuentes, G.G.; Almandoz, E.; López-Sabirón, A.M. Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 11489–11498. [Google Scholar] [CrossRef]
- Feng, K.; Guo, X.; Li, Z.; Yao, C.; Wu, Y. Investigation of multi-coating process treated magnesium alloy as bipolar plate in polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2016, 41, 6020–6028. [Google Scholar] [CrossRef]
- Yi, P.; Peng, L.; Zhou, T.; Wu, H.; Lai, X. Cr–N–C multilayer film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells using closed field unbalanced magnetron sputter ion plating. Int. J. Hydrog. Energy 2013, 38, 1535–1543. [Google Scholar] [CrossRef]
- Proctor, S.; Linholm, L. A direct measurement of interfacial contact resistance. IEEE Electron Device Lett. 1982, 3, 294–296. [Google Scholar] [CrossRef]
- Turan, C.; Cora, Ö.N.; Koç, M. Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. Int. J. Hydrog. Energy 2011, 36, 12370–12380. [Google Scholar] [CrossRef]
- Makkus, R.C.; Janssen, A.H.; de Bruijn, F.A.; Mallant, R.K. Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources 2000, 86, 274–282. [Google Scholar] [CrossRef]
- Lædre, S.; Kongstein, O.E.; Oedegaard, A.; Seland, F.; Karoliussen, H. Measuring In Situ Interfacial Contact Resistance in a Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 2019, 166, F853–F859. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Huang, H.J.; Li, Z.; Xu, S.; Tao, H.; Munroe, P.; Xie, Z.-H. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell. J. Alloys Compd. 2016, 663, 718–730. [Google Scholar] [CrossRef] [Green Version]
- Omrani, M.; Habibi, M.; Moti Birjandi, M.S. Enhanced electrical conductivity of two layers AlN-TiN coating on SS316L as bipolar plate using plasma focus device. Int. J. Hydrog. Energy 2016, 2016. 41, 5028–5036. [Google Scholar] [CrossRef]
- Wang, S.; Hou, M.; Zhao, Q.; Jiang, Y.; Wang, Z.; Li, H.; Fu, Y.; Shao, Z. Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells. J. Energy Chem. 2017, 26, 168–174. [Google Scholar] [CrossRef]
- Wang, L.; Northwood, D.; Nie, X.; Housden, J.; Spain, E.; Leyland, A.; Matthews, A. Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments. J. Power Sources 2010, 195, 3814–3821. [Google Scholar] [CrossRef]
- Liang, P.; Qiu, D.; Peng, L.; Yi, P.; Lai, X.; Ni, J. Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates. Energy Convers. Manag. 2018, 169, 334–344. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Sun, J.; Lv, Y.; Li, S.; Ji, S.; Wen, Z. Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2012, 199, 195–200. [Google Scholar] [CrossRef]
- Dadfar, M.; Salehi, M.; Golozar, M.; Trasatti, S.; Casaletto, M. Surface and corrosion properties of modified passive layer on 304 stainless steel as bipolar plates for PEMFCs. Int. J. Hydrog. Energy 2017, 42, 25869–25876. [Google Scholar] [CrossRef]
- Shimpalee, S.; Lilavivat, V.; McCrabb, H.; Khunatorn, Y.; Lee, H.-K.; Lee, W.-K.; Weidner, J. Investigation of bipolar plate materials for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2016, 41, 13688–13696. [Google Scholar] [CrossRef] [Green Version]
- Choe, C.; Choi, H.; Hong, W.; Lee, J.-J. Tantalum nitride coated AISI 316L as bipolar plate for polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2012, 37, 405–411. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Tian, L.; Dong, H. Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2015, 40, 10281–10292. [Google Scholar] [CrossRef] [Green Version]
- Jinlong, L.; Zhuqing, W.; Tongxiang, L.; Ken, S.; Hideo, M. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum. Results Phys. 2017, 7, 3459–3464. [Google Scholar] [CrossRef]
- Fukutsuka, T.; Yamaguchi, T.; Miyano, S.-I.; Matsuo, Y.; Sugie, Y.; Ogumi, Z. Carbon-coated stainless steel as PEFC bipolar plate material. J. Power Sources 2007, 174, 199–205. [Google Scholar] [CrossRef]
- Lee, S.; Pukha, V.; Vinogradov, V.; Kakati, N.; Jee, S.; Cho, S.; Yoon, Y. Nanocomposite-carbon coated at low-temperature: A new coating material for metallic bipolar plates of polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2013, 38, 14284–14294. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, J.; Wang, J.; Li, J.; Chen, J.; Xue, Q. Interlayer design for the graphite-like carbon film with high load-bearing capacity under sliding-friction condition in water. Appl. Surf. Sci. 2014, 311, 816–824. [Google Scholar] [CrossRef]
- Joseph, S.; McClure, J.; Chianelli, R.; Pich, P.; Sebastian, P. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). Int. J. Hydrog. Energy 2005, 30, 1339–1344. [Google Scholar] [CrossRef]
- Feng, K.; Li, Z.; Sun, H.; Yu, L.; Cai, X.; Wu, Y.; Chu, P.K. C/CrN multilayer coating for polymer electrolyte membrane fuel cell metallic bipolar plates. J. Power Sources 2013, 222, 351–358. [Google Scholar] [CrossRef]
- Mo, J.; Steen, S.M.; Zhang, F.-Y.; Toops, T.J.; Brady, M.P.; Green, J.B. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. Int. J. Hydrog. Energy 2015, 40, 12506–12511. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, M.; Myung, S.-T.; Katada, Y.; Yashiro, H. Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells. Electrochim. Acta 2016, 211, 754–760. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Matykina, E. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4. Corros. Sci. 2008, 50, 780–794. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Chen, D.; Liang, P. Molybdenum addition enhancing the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2015, 40, 5947–5957. [Google Scholar] [CrossRef]
- Lavigne, O.; Alémany-Dumont, C.; Normand, B.; Delichère, P.; Descamps, A. Cerium insertion in 316L passive film: Effect on conductivity and corrosion resistance performances of metallic bipolar plates for PEM fuel cell application. Surf. Coat. Technol. 2010, 205, 1870–1877. [Google Scholar] [CrossRef]
- Yun, Y.-H. Deposition of gold–titanium and gold–nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 1713–1718. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Kang, B.; Li, S.; Ji, S.; Wen, Z.; Wang, X. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate. J. Power Sources 2014, 246, 775–782. [Google Scholar] [CrossRef]
- Turan, C.; Cora, Ö.N.; Koç, M. Contact resistance characteristics of coated metallic bipolar plates for PEM fuel cells—Investigations on the effect of manufacturing. Int. J. Hydrog. Energy 2012, 37, 18187–18204. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. Corros. Sci. 2003, 45, 1257–1273. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Li, P.; Sun, J.; Lv, Y.; Jing, B.; Li, S.; Ji, S.; Wen, Z. Molybdenum nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2012, 37, 5876–5883. [Google Scholar] [CrossRef]
- Lee, W.-J.; Yun, E.-Y.; Lee, H.-B.-R.; Hong, S.W.; Kwon, S.-H. Ultrathin effective TiN protective films prepared by plas-ma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells. Appl. Surf. Sci. 2020, 519, 146215. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, G.; Hou, M.; Wu, B.; Li, H.; Hao, L.; Shao, Z.; Yi, B. Optimized Cr-nitride film on 316L stainless steel as proton exchange membrane fuel cell bipolar plate. Int. J. Hydrog. Energy 2009, 34, 453–458. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L.; Sun, J. Characteristics and properties of CrN compound layer produced by plasma nitriding of Cr-electroplated of AISI 304 stainless steel. Surf. Coat. Technol. 2020, 385, 125450. [Google Scholar] [CrossRef]
- Haye, E.; Deschamps, F.; Caldarella, G.; Piedboeuf, M.-L.; Lafort, A.; Cornil, H.; Colomer, J.-F.; Pireaux, J.-J.; Job, N. Formable chromium nitride coatings for proton exchange membrane fuel cell stainless steel bipolar plates. Int. J. Hydrog. Energy 2020, 45, 15358–15365. [Google Scholar] [CrossRef]
- Yang, L.X.; Liu, R.J.; Wang, Y.; Liu, H.J.; Zeng, C.L.; Fu, C. Growth of nanocrystalline β-Nb2N coating on 430 ferritic stainless steel bipolar plates of PEMFCs by disproportionation reaction of Nb(IV) ions in molten salt. Corros. Sci. 2020, 174, 108862. [Google Scholar] [CrossRef]
- Xu, J.; Xu, S.; Munroe, P.; Xie, Z.-H. A ZrN nanocrystalline coating for polymer electrolyte membrane fuel cell metallic bipolar plates prepared by reactive sputter deposition. RSC Adv. 2015, 5, 67348–67356. [Google Scholar] [CrossRef]
- Song, M.; Guo, J.; Yang, Y.; Geng, K.; Xiang, M.; Zhu, Q.; Hu, C.; Zhao, H. Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L. Appl. Surf. Sci. 2020, 504, 144483. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, K.H.; Shao, Z.; Wang, F.; Zhao, S.; Suo, N. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti–Mo–N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells. J. Power Sources 2014, 253, 201–204. [Google Scholar] [CrossRef]
- Jin, J.; Hu, M.; Zhao, X. Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications. Int. J. Hydrog. Energy 2020, 45, 23310–23326. [Google Scholar] [CrossRef]
- Bi, F.; Yi, P.; Zhou, T.; Peng, L.; Lai, X. Effects of Al incorporation on the interfacial conductivity and corrosion resistance of CrN film on SS316L as bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2015, 40, 9790–9802. [Google Scholar] [CrossRef]
- Ingle, A.V.; Raja, V.S.; Rangarajan, J.; Mishra, P. Corrosion resistant quaternary Al–Cr–Mo–N coating on type 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2020, 45, 3094–3107. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, T.; Liu, J.; Zhang, X.; Shen, B.; Hu, W.; Liu, L. Performance of surface chromizing layer on 316L stainless steel for proton exchange membrane fuel cell bipolar plates. Int. J. Hydrog. Energy 2019, 44, 22110–22121. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, T.; Liu, J.; Zhang, X.; Shen, B.; Hu, W.; Liu, L. Effects of pack chromizing on the microstructure and anticorrosion properties of 316L stainless steel. Surf. Coat. Technol. 2019, 366, 86–96. [Google Scholar] [CrossRef]
- Yang, L.; Yu, H.; Jiang, L.; Zhu, L.; Jian, X.; Wang, Z. Improved anticorrosion properties and electrical conductivity of 316L stainless steel as bipolar plate for proton exchange membrane fuel cell by lower temperature chromizing treatment. J. Power Sources 2010, 195, 2810–2814. [Google Scholar] [CrossRef]
- Bai, C.-Y.; Wen, T.-M.; Hou, K.-H.; Ger, M.-D. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell. J. Power Sources 2010, 195, 779–786. [Google Scholar] [CrossRef]
- Bai, C.-Y.; Ger, M.-D.; Wu, M.-S. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides. Int. J. Hydrog. Energy 2009, 34, 6778–6789. [Google Scholar] [CrossRef]
- Wang, H.-C.; Hou, K.-H.; Lu, C.-E.; Ger, M.-D. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells. Thin Solid Films 2014, 570, 209–214. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, L.; Yi, P.; Peng, L. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs. Int. J. Hydrog. Energy 2016, 41, 1142–1150. [Google Scholar] [CrossRef]
- Wang, L.; Tao, Y.; Zhang, Z.; Wang, Y.; Feng, Q.; Wang, H.; Li, H. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2019, 44, 4940–4950. [Google Scholar] [CrossRef]
- Abbas, N.; Qin, X.; Ali, S.; Zhu, G.; Lu, J.; e Alam, F.; Wattoo, A.G.; Zeng, X.; Gu, K.; Tang, J. Direct deposition of extremely low interface-contact-resistant Ti2AlC MAX-phase coating on stainless-steel by mid-frequency magnetron sputtering method. J. Eur. Ceram. Soc. 2020, 40, 3338–3342. [Google Scholar] [CrossRef]
- Abbas, N.; Qin, X.; Ali, S.; Zhu, G.; Yi, Z.; Yang, X.; Zeng, X.; Ullah, Z.; Gu, K.; Tang, J. Study of microstructural variation with annealing temperature of Ti–Al–C films coated on stainless steel substrates. Int. J. Hydrog. Energy 2020, 45, 3186–3192. [Google Scholar] [CrossRef]
- Lu, J.; Abbas, N.; Tang, J.; Zhu, G. Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments. Corros. Sci. 2019, 158. [Google Scholar] [CrossRef]
- Lu, J.; Abbas, N.; Tang, J.; Hu, R.; Zhu, G. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments. Electrochem. Commun. 2019, 105, 106490. [Google Scholar] [CrossRef]
- Li, H.; Guo, P.; Zhang, D.; Liu, L.; Wang, Z.; Ma, G.; Xin, Y.; Ke, P.; Saito, H.; Wang, A. Interface-induced degradation of amorphous carbon films/stainless steel bipolar plates in proton exchange membrane fuel cells. J. Power Sources 2020, 469, 228269. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Chen, S.-K.; Chiu, P.-J.; Chang, M.-H.; Hung, T.-T.; Ko, T.-H. Carbon film-coated 304 stainless steel as PEMFC bipolar plate. J. Power Sources 2008, 176, 276–281. [Google Scholar] [CrossRef]
- Pu, N.-W.; Shi, G.-N.; Liu, Y.-M.; Sun, X.; Chang, J.-K.; Sun, C.-L.; Ger, M.-D.; Chen, C.-Y.; Wang, P.-C.; Peng, Y.-Y.; et al. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. J. Power Sources 2015, 282, 248–256. [Google Scholar] [CrossRef]
- Hou, K.; Yi, P.; Peng, L.; Lai, X. Niobium doped amorphous carbon film on metallic bipolar plates for PEMFCs: First principle calculation, microstructure and performance. Int. J. Hydrog. Energy 2019, 44, 3144–3156. [Google Scholar] [CrossRef]
- Zhang, D.; Yi, P.; Peng, L.; Lai, X.; Pu, J. Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells. Carbon 2019, 145, 333–344. [Google Scholar] [CrossRef]
- Alaefour, I.; Shahgaldi, S.; Zhao, J.; Li, X. Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells. Int. J. Hydrog. Energy 2021, 46, 11059–11070. [Google Scholar] [CrossRef]
- Che, J.; Yi, P.; Peng, L.; Lai, X. Impact of pressure on carbon films by PECVD toward high deposition rates and high stability as metallic bipolar plate for PEMFCs. Int. J. Hydrog. Energy 2020, 45, 16277–16286. [Google Scholar] [CrossRef]
- Wlodarczyk, R.; Zasada, D.; Morel, S.; Kacprzak, A. A comparison of nickel coated and uncoated sintered stainless steel used as bipolar plates in low-temperature fuel cells. Int. J. Hydrog. Energy 2016, 41, 17644–17651. [Google Scholar] [CrossRef]
- Yi, P.; Peng, L.; Zhou, T.; Huang, J.; Lai, X. Composition optimization of multilayered chromium-nitride–carbon film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2013, 236, 47–53. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, G.; Hou, M.; Wu, B.; Shao, Z.; Yi, B. Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2009, 34, 405–409. [Google Scholar] [CrossRef]
- Bi, F.; Peng, L.; Yi, P.; Lai, X. Multilayered Zr–C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2016, 314, 58–65. [Google Scholar] [CrossRef]
- Li, X.; Hou, K.; Qiu, D.; Yi, P.; Lai, X. A first principles and experimental study on the influence of nitrogen doping on the performance of amorphous carbon films for proton exchange membrane fuel cells. Carbon 2020, 167, 219–229. [Google Scholar] [CrossRef]
- Dong, H.; He, S.; Wang, X.; Zhang, C.; Sun, D. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC. Diam. Relat. Mater. 2020, 110, 108156. [Google Scholar] [CrossRef]
- Jiang, L.; Syed, J.A.; Gao, Y.; Zhang, Q.; Zhao, J.; Lu, H.; Meng, X. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates. Appl. Surf. Sci. 2017, 426, 87–98. [Google Scholar] [CrossRef]
- García, M.L.; Smit, M.A. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. J. Power Sources 2006, 158, 397–402. [Google Scholar] [CrossRef]
- Shanmugham, C.; Rajendran, N. Corrosion resistance of poly p-phenylenediamine conducting polymer coated 316L SS bipolar plates for Proton Exchange Membrane Fuel Cells. Prog. Org. Coat. 2015, 89, 42–49. [Google Scholar] [CrossRef]
- Jiang, L.; Syed, J.A.; Lu, H.; Meng, X. In-situ electrodeposition of conductive polypyrrole-graphene oxide composite coating for corrosion protection of 304SS bipolar plates. J. Alloys Compd. 2019, 770, 35–47. [Google Scholar] [CrossRef]
- Jiang, L.; Syed, J.A.; Zhang, G.; Ma, Y.; Ma, J.; Lu, H.; Meng, X. Enhanced anticorrosion performance of PPY-graphene oxide/PPY-camphorsulfonic acid composite coating for 304SS bipolar plates in proton exchange membrane fuel cell. J. Ind. Eng. Chem. 2019, 80, 497–507. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, K.; Gupta, G.; Santamaria, D.G. Exploring PANI-TiN nanoparticle coatings in a PEFC environment: Enhancing corrosion resistance and conductivity of stainless steel bipolar plates. Energies 2017, 10, 1152. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, S.; Wang, P.; Lu, Z.; Chen, S.; Wang, L. Synthesis and corrosion protection of Nb doped TiO2 na-nopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells. Prog. Org. Coat. 2019, 137, 105327. [Google Scholar] [CrossRef]
- Pan, T.; Zuo, X.; Wang, T.; Hu, J.; Chen, Z.; Ren, Y. Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells. J. Power Sources 2016, 302, 180–188. [Google Scholar] [CrossRef]
- Akula, S.; Kalaiselvi, P.; Sahu, A.K.; Chellammal, S. Electrodeposition of conductive PAMT/PPY bilayer composite coatings on 316L stainless steel plate for PEMFC application. Int. J. Hydrog. Energy 2021, 46, 17909–17921. [Google Scholar] [CrossRef]
- Pan, T.; Chen, Y.; Zhang, B.; Hu, J.; Li, C. Corrosion behavior of niobium coated 304 stainless steel in acid solution. Appl. Surf. Sci. 2016, 369, 320–325. [Google Scholar] [CrossRef]
- Mohammadi, N.; Yari, M.; Allahkaram, S.R. Characterization of PbO2 coating electrodeposited onto stainless steel 316L substrate for using as PEMFC’s bipolar plates. Surf. Coat. Tech. 2013, 236, 341–346. [Google Scholar] [CrossRef]
- Wang, H.; Turner, J.A.; Li, X.; Teeter, G. Process modification for coating SnO2:F on stainless steels for PEM fuel cell bipolar plates. J. Power Sources 2008, 178, 238–247. [Google Scholar] [CrossRef]
- Manso, A.; Marzo, F.; Garicano, X.; Alegre, C.; Lozano, A.; Barreras, F. Corrosion behavior of tantalum coatings on AISI 316L stainless steel substrate for bipolar plates of PEM fuel cells. Int. J. Hydrog. Energy 2020, 45, 20679–20691. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Fan, H.-Q.; Muneshwar, T.; Cadien, K.; Luo, J.-L. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment. J. Mater. Sci. Technol. 2021, 61, 75–84. [Google Scholar] [CrossRef]
- Chanda, U.K.; Padhee, S.P.; Pandey, A.K.; Roy, S.; Pati, S. Electrodeposited Ni–Mo.–Cr–P coatings for AISI 1020 steel bipolar plates. Int. J. Hydrog. Energy 2020, 45, 21892–21904. [Google Scholar] [CrossRef]
- He, R.; Jiang, J.; Wang, R.; Yue, Y.; Chen, Y.; Pan, T. Anti-corrosion and conductivity of titanium diboride coating on metallic bipolar plates. Corros. Sci. 2020, 170, 108646. [Google Scholar] [CrossRef]
- Jin, C.K.; Jeong, M.G.; Kang, C.G. Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates. Int. J. Hydrog. Energy 2014, 39, 21480–21488. [Google Scholar] [CrossRef]
- El-Enin, S.A.A.; Abdel-Salam, O.E.; El-Abd, H.; Amin, A.M. New electroplated aluminum bipolar plate for PEM fuel cell. J. Power Sources 2008, 177, 131–136. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, L.; Guo, L.; Wang, Z.; Zhao, J.; Tuan, W.-H.; Niihara, K. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. Int. J. Hydrog. Energy 2011, 36, 9155–9161. [Google Scholar] [CrossRef]
- Lee, K.H.; Jin, C.K.; Kang, C.G.; Seo, H.Y.; Kim, J.D. Fabrication of Titanium Bipolar Plates by Rubber Forming Process and Evaluation Characteristics of TiN coated Titanium Bipolar Plates. Fuel Cells 2014, 15, 170–177. [Google Scholar] [CrossRef]
- Bi, J.; Yang, J.; Liu, X.; Wang, D.; Yang, Z.; Liu, G.; Wang, X. Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells. Int. J. Hydrog. Energy 2021, 46, 1144–1154. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, C.; Han, Y.; Du, F.; Wang, H.; Wang, X.; Sun, J. Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell. Surf. Coat. Technol. 2020, 397, 126064. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Han, Y.; Wang, H.; Wang, X.; Yu, Y.; Sun, J. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC. Int. J. Hydrog. Energy 2020, 45, 10050–10058. [Google Scholar] [CrossRef]
- Jin, J.; He, Z.; Zhao, X. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti–6Al–4V bipolar plates for PEMFC. Int. J. Hydrog. Energy 2020, 45, 12489–12500. [Google Scholar] [CrossRef]
- Peng, S.; Xu, J.; Li, Z.; Jiang, S.; Munroe, P.; Xie, Z.-H.; Lu, H. A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells. Ceram. Int. 2020, 46, 2743–2757. [Google Scholar] [CrossRef]
- Joseph, S.; McClure, J.; Sebastian, P.; Moreira, J.; Valenzuela, E. Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. J. Power Sources 2008, 177, 161–166. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, Y.-B.; Kim, K.-M.; Jeong, M.-G.; Lim, D.-S. Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plate. Renew. Energy 2013, 54, 46–50. [Google Scholar] [CrossRef]
- Mawdsley, J.R.; Carter, J.D.; Wang, X.; Niyogi, S.; Fan, C.Q.; Koc, R.; Osterhout, G. Composite-coated aluminum bipolar plates for PEM fuel cells. J. Power Sources 2013, 231, 106–112. [Google Scholar] [CrossRef]
- Li, Z.; Feng, K.; Wang, Z.; Cai, X.; Yao, C.; Wu, Y. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2014, 39, 8421–8430. [Google Scholar] [CrossRef]
- Silva, F.C.; Prada Ramirez, O.M.; Tunes, M.A.; Edmondson, P.D.; Sagás, J.C.; Fontana, L.C.; de Melo, H.G.; Schön, C.G. Corrosion resistance of functionally graded TiN/Ti coatings for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2020, 45, 33993–34010. [Google Scholar] [CrossRef]
- Chiang, T.-Y.; Ay, S.; Tsai, L.-C.; Sheu, H.-H.; Lu, C.-E. Corrosion resistance of 5052 Al-alloy with a zirconia-rich conversion coating used in bipolar plates in PEMFCs. Int. J. Electrochem. Sci. 2014, 9, 5850–5863. [Google Scholar]
- Hua, Q.; Zeng, Y.; He, Z.; Xu, Q.; Min, Y. Microstructure, synergistic mechanism and corrosion behavior of tin oxide conversion film modified by chitosan on aluminum alloy surface. Colloid Interface Sci. Commun. 2020, 36, 100262. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Hameed, R.A.; El-Khatib, K. Development of electroless Ni–P modified aluminum substrates in a simulated fuel cell environment. J. Ind. Eng. Chem. 2015, 30, 239–248. [Google Scholar] [CrossRef]
- Gutiérrez, A.G.G.; Pech-Canul, M.A.; Sebastian, P.J. Zincating Effect on Corrosion Resistance of Electroless Ni-P Coating on Aluminum Alloy 6061. Fuel Cells 2017, 17, 770–777. [Google Scholar] [CrossRef]
- Marzo, F.; Alberro, M.; Manso, A.; Garikano, X.; Alegre, C.; Montiel, M.; Lozano, A.; Barreras, F. Evaluation of the corrosion resistance of Ni(P)Cr coatings for bipolar plates by electrochemical impedance spectroscopy. Int. J. Hydrog. Energy 2020, 45, 20632–20646. [Google Scholar] [CrossRef]
- Nikiforov, A.; Petrushina, I.; Christensen, E.; Tomás-García, A.; Bjerrum, N. Corrosion behaviour of construction materials for high temperature steam electrolysers. Int. J. Hydrog. Energy 2011, 36, 111–119. [Google Scholar] [CrossRef]
- Ghorbani, M.M.; Taherian, R.; Bozorg, M. Investigation on physical and electrochemical properties of TiN-coated Monel alloy used for bipolar plates of proton exchange membrane fuel cell. Mater. Chem. Phys. 2019, 238, 121916. [Google Scholar] [CrossRef]
- Ben Jadi, S.; El Jaouhari, A.; Aouzal, Z.; El Guerraf, A.; Bouabdallaoui, M.; Wang, R.; Bazzaoui, E.A.; Bazzaoui, M. Elec-tropolymerization and corrosion resistance of polypyrrole on nickel bipolar plate for PEM fuel cell application. Mater. Today 2020, 22, 52–56. [Google Scholar]
- Park, J.; Kusumah, P.; Kim, Y.; Kim, K.; Kwon, K.; Lee, C.K. Corrosion Prevention of Chromium Nitride Coating with an Application to Bipolar Plate Materials. Electrochemistry 2014, 82, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Dilasari, B.; Kim, Y.; Kim, K.; Lee, C.K.; Kwon, K. Passivation Behavior and Surface Resistance of Electrodeposited Nickel-Carbon Composites. Electrochem. 2014, 82, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Thalmaier, G.; Vida-Simiti, I.; Vermesan, H.; Codrean, C.; Chira, M. Corrosion Resistance Measurements of Amorphous Ni40Ti40Nb20 Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells. Adv. Eng. Forum 2013, 8–9, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.; Yamaura, S.-I.; Kimura, H.; Inoue, A. Production of metallic glassy bipolar plates for PEM fuel cells by hot pressing in the supercooled liquid state. Int. J. Hydrog. Energy 2008, 33, 5678–5685. [Google Scholar] [CrossRef]
- Tian, R.; Qin, Z. Bulk metallic glass Zr55Cu30Al10Ni5 bipolar plates for proton exchange membrane fuel cell. Energy Convers. Manag. 2014, 86, 927–932. [Google Scholar] [CrossRef]
- Lv, J.; Tongxiang, L.; Chen, W. The effects of molybdenum and reduced graphene oxide on corrosion resistance of amorphous nickel–phosphorus as bipolar plates in PEMFC environment. Int. J. Hydrog. Energy 2016, 41, 9738–9745. [Google Scholar] [CrossRef]
- Han, X.; Feng, S.; Chen, S.; Cao, Q.; Zhang, C.; Chen, Q. An investigation of Zr-based bulk metallic glasses as bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2020, 45, 3132–3144. [Google Scholar] [CrossRef]
- Nikam, V.V.; Reddy, R.G. Corrosion studies of a copper–beryllium alloy in a simulated polymer electrolyte membrane fuel cell environment. J. Power Sources 2005, 152, 146–155. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lee, S.-H.; Kim, J.-H.; Kim, M.-C.; Wee, D.-M. Thermally nitrided Cu–5.3Cr alloy for application as metallic separators in PEMFCs. Int. J. Hydrog. Energy 2008, 33, 4171–4177. [Google Scholar] [CrossRef]
- Lee, Y.H.; Noh, S.; Lee, J.-H.; Chun, S.-H.; Cha, S.W.; Chang, I. Durable graphene-coated bipolar plates for polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2017, 42, 27350–27353. [Google Scholar] [CrossRef]
- Sadeghian, Z.; Hadidi, M.R.; Salehzadeh, D.; Nemati, A. Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment. Int. J. Hydrog. Energy 2020, 45, 15380–15389. [Google Scholar] [CrossRef]
- Altun, H.; Sen, S. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy. Mater. Des. 2006, 27, 1174–1179. [Google Scholar] [CrossRef]
- Wu, G.; Zeng, X.; Ding, W.; Guo, X.; Yao, S. Characterization of ceramic PVD thin films on AZ31 magnesium alloys. Appl. Surf. Sci. 2006, 252, 7422–7429. [Google Scholar] [CrossRef]
- Hollstein, F.; Wiedemann, R.; Scholz, J. Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surf. Coat. Technol. 2003, 162, 261–268. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Z.; Feng, K.; Guo, X.; Zhou, Z.; Dong, J.; Wu, Y. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer. Appl. Surf. Sci. 2015, 327, 100–106. [Google Scholar] [CrossRef]
- Yan, P.; Ying, T.; Li, Y.; Li, D.; Cao, F.; Zeng, X.; Ding, W. A novel high corrosion-resistant polytetrafluoroethylene/carbon cloth/Ag coating on magnesium alloys as bipolar plates for light-weight proton exchange membrane fuel cells. J. Power Sources 2021, 484, 229231. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.-J.; Liu, H. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities. Int. J. Hydrog. Energy 2011, 36, 1654–1663. [Google Scholar] [CrossRef]
- Nikam, V.V.; Reddy, R.G.; Collins, S.R.; Williams, P.C.; Schiroky, G.H.; Henrich, G.W. Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application. Electrochim. Acta 2008, 53, 2743–2750. [Google Scholar] [CrossRef]
- Jung, G.-B.; Chuang, K.-Y.; Jao, T.-C.; Yeh, C.-C.; Lin, C.-Y. Study of high voltage applied to the membrane electrode assemblies of proton exchange membrane fuel cells as an accelerated degradation technique. Appl. Energy 2012, 100, 81–86. [Google Scholar] [CrossRef]
- Papadias, D.D.; Ahluwalia, R.K.; Thomson, J.K.; Meyer, H.M.; Brady, M.P.; Wang, H.; Turner, J.A.; Mukundan, R.; Borup, R. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. J. Power Sources 2015, 273, 1237–1249. [Google Scholar] [CrossRef]
- Le Bozec, N.; Compère, C.; L’Her, M.; Laouenan, A.; Costa, D.; Marcus, P. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci. 2001, 43, 765–786. [Google Scholar] [CrossRef]
- Park, Y.-C.; Lee, S.-H.; Kim, S.-K.; Lim, S.; Jung, D.-H.; Lee, D.-Y.; Choi, S.-Y.; Ji, H.; Peck, D.-H. Performance and long-term stability of Ti metal and stainless steels as a metal bipolar plate for a direct methanol fuel cell. Int. J. Hydrog. Energy 2010, 35, 4320–4328. [Google Scholar] [CrossRef]
- Alishahi, M.; Mahboubi, F.; Khoie, S.M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells. J. Power Sources 2016, 322, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Woo, S.; Kakati, N.; Lee, Y.; Yoon, Y. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates. Surf. Coat. Technol. 2016, 303, 162–169. [Google Scholar] [CrossRef]
- Mathabatha, M.; Popoola, A.; Oladijo, O. Residual stresses and corrosion performance of plasma sprayed zinc-based alloy coating on mild steel substrate. Surf. Coat. Technol. 2017, 318, 293–298. [Google Scholar] [CrossRef]
Monitored Property | Unit | 2015 Status | Objectives 2020 |
---|---|---|---|
Price | $/kWt | 7 a | 3 |
Weight | kg/kW | <0.4 | 0.4 |
Hydrogen permeability coefficient 1 | Std cm3/(s cm2Pa) | 0 | <1.3 × 10−14 |
Anode corrosion 2 | µA/cm2 | No active peak | <1 without active peak |
Cathode corrosion 3 | µA/cm2 | <0.1 | <1 |
Electrical conductivity | S/cm | >100 b | >100 |
Areal specific resistance 4 | ohm cm2 | 0.006 c | <0.01 |
Flexural strength | MPa | >34 | >25 |
Forming elongation | % | 20–40 | 40 |
AISI No. | DIN Equation | C | Si | Mn | P | S | Cr | Mo | Ni | Other |
---|---|---|---|---|---|---|---|---|---|---|
201 | 1.4372 | ≤0.15 | ≤1.00 | 5.5–7.5 | ≤0.060 | ≤0.030 | 16.0–18.0 | - | 3.5–5.5 | N ≤ 0.25 |
254SMO | 1.4547 | ≤0.02 | ≤0.80 | ≤1.00 | ≤0.030 | ≤0.010 | 19.5–20.5 | 6.0–6.5 | 17.5–18.5 | Cu 0.50–1.00 N 0.18–0.22 |
304 | 1.4301 | ≤0.07 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 17.5–19.5 | - | 8.0–10.5 | N ≤ 0.1 |
304L | 1.4307 | ≤0.03 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 17.5–19.5 | - | 8.0–12.0 | N ≤ 0.10 |
310 | 1.4845 | ≤0.25 | ≤1.50 | ≤2.00 | ≤0.045 | ≤0.030 | 24.0–26.0 | - | 19.0–22.0 | - |
310S | 1.4845 | ≤0.08 | ≤1.50 | ≤2.00 | ≤0.045 | ≤0.030 | 24.0–26.0 | - | 19.0–22.0 | - |
316 | 1.4401 1.4436 | ≤0.08 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 16.0–18.0 | 2.00–3.00 | 10.0–14.0 | N ≤ 0.10 |
316L | 1.4404 | ≤0.03 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 16.0–18.0 | 2.00–3.00 | 10.0–14.0 | N ≤ 0.10 |
321 | 1.4541 | ≤0.08 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 17.0–19.0 | - | 9.0–12.0 | Ti 5xC-0.70 N ≤ 0.10 |
347 | 1.4550 | ≤0.08 | ≤0.75 | ≤2.00 | ≤0.045 | ≤0.030 | 17.0–19.0 | - | 9.0–13.0 | Nb+Ta 10xC-1.0 |
436 | 1.4526 | ≤0.12 | ≤1.00 | ≤1.00 | ≤0.040 | ≤0.030 | 16.0–18.0 | 0.75–1.25 | - | Nb+Ta 5xC-0.80 |
430 | 1.4016 | ≤0.12 | ≤1.00 | ≤1.00 | ≤0.040 | ≤0.030 | 16.0–18.0 | - | - | - |
446 | 1.4749 | ≤0.20 | ≤1.00 | ≤1.50 | ≤0.040 | ≤0.030 | 23.0–27.0 | - | ≤0.75 | N ≤ 0.25 |
654SMO S32654 | 1.4652 | ≤0.02 | ≤0.50 | 2.0–4.0 | ≤0.030 | ≤0.005 | 24.0–25.0 | 7.0–8.0 | 21.0–23.0 | Cu 0.30–0.60 N 0.45/0.55 |
904L | 1.4539 | ≤0.02 | ≤1.00 | ≤2.00 | ≤0.045 | ≤0.035 | 19.0–23.0 | 4.0–5.0 | 23.0–28.0 | Cu 1.0–2.0 N ≤ 0.10 |
S32205 | 1.4462 | ≤0.03 | ≤1.00 | ≤2.00 | ≤0.030 | ≤0.020 | 22.0–23.0 | 3.0–3.5 | 4.5–6.5 | N 0.14–0.20 |
Material | Corrosion Rate [mm/a] | ||
---|---|---|---|
30 °C | 80 °C | 120 °C | |
AISI 316L | 0.037 | 0.73 | 1.46 |
AISI 321 | <0.01 | 0.12 | 0.46 |
AISI 347 | <0.01 | 0.29 | 0.92 |
Inconel 625 | <0.01 | <0.01 | 0.23 |
Inconel 825 | <0.01 | 0.23 | 0.37 |
Hastelloy C-275 | <0.01 | 0.05 | 0.28 |
316L | 904L | 254SMO | |||
---|---|---|---|---|---|
Time (h) | Rp (kΩ) | Time (h) | Rp (kΩ) | Time (h) | Rp (kΩ) |
2 | 63 | 2 | 56 | 36 | 260 |
69 | 280 | 22 | 213 | 108 | 320 |
94 | 372 | 52 | 305 | 145 | 360 |
124 | 404 | 122 | 500 | 190 | 410 |
172 | 450 | 215 | 665 | 339 | 460 |
292 | 490 | 292 | 1400 | 425 | 480 |
340 | 484 | 358 | 1600 | 548 | 540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohackova, T.; Ludvik, J.; Kouril, M. Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates—A Review. Materials 2021, 14, 2682. https://doi.org/10.3390/ma14102682
Bohackova T, Ludvik J, Kouril M. Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates—A Review. Materials. 2021; 14(10):2682. https://doi.org/10.3390/ma14102682
Chicago/Turabian StyleBohackova, Tereza, Jakub Ludvik, and Milan Kouril. 2021. "Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates—A Review" Materials 14, no. 10: 2682. https://doi.org/10.3390/ma14102682
APA StyleBohackova, T., Ludvik, J., & Kouril, M. (2021). Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates—A Review. Materials, 14(10), 2682. https://doi.org/10.3390/ma14102682