Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies
Abstract
:1. Introduction
2. Techniques That Can Be Used to Produce BMTiS
2.1. Adsorption of Biomolecules by Immersion
2.2. Covalent Bonding
2.3. Anodic Polarization
2.4. Layer-by-Layer Technique (LBL)
3. Biomolecules Used in In Vivo Studies
3.1. Peptides
3.2. Growth Factors
3.3. Extracellular Matrix Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasemo, B.; Gold, J. Implant surfaces and interface processes. Adv. Dent. Res. 1999, 13, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Vroman, L.; Adams, A.L. Identification of adsorbed protein films by exposure to antisera and water vapor. J. Biomed. Mater. Res. 1969, 3, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. J. R. Soc. Interface 2009, 7, S93–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez Baena, R.Y.; Rizzo, S.; Manzo, L.; Lupi, S.M. Nanofeatured Titanium Surfaces for Dental Implantology: Biological Effects, Biocompatibility, and Safety. J. Nanomater. 2017, 2017, 6092895. [Google Scholar] [CrossRef]
- Lupi, S.M.; Galinetto, P.; Albini, B.; Di Ronza, E.; Rizzo, S.; Rodriguez y Baena, R. Micro-raman spectroscopy of dental implants subjected to different surface treatments. Appl. Sci. 2020, 10, 2417. [Google Scholar] [CrossRef] [Green Version]
- Lupi, S.M.; Albini, B.; Baena, A.R.Y.; Lanfrè, G.; Galinetto, P. Anatase forming treatment without surface morphological alteration of dental implant. Materials 2020, 13, 5280. [Google Scholar] [CrossRef] [PubMed]
- Puleo, D.A.; Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials 1999, 20, 2311–2321. [Google Scholar] [CrossRef]
- Novaes, A.B.; de Souza, S.L.S.; de Barros, R.R.M.; Pereira, K.K.Y.; Iezzi, G.; Piattelli, A. Influence of implant surfaces on osseointegration. Braz. Dent. J. 2010, 21, 471–481. [Google Scholar] [CrossRef]
- Morra, M. Biochemical modification of titanium surfaces: Peptides and ECM proteins. Eur. Cells Mater. 2006, 12, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Enggist, L.; Kuffer, A.F.; Buser, D.; Hunziker, E.B. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials 2007, 28, 2677–2686. [Google Scholar] [CrossRef]
- Yang, D.H.; Lee, D.W.; Kwon, Y.D.; Kim, H.J.; Chun, H.J.; Jang, J.W.; Khang, G. Surface modification of titanium with hydroxyapatite-heparin-BMP-2 enhances the efficacy of bone formation and osseointegration in vitro and in vivo. J. Tissue Eng. Regen. Med. 2015, 9, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, E.B.; Enggist, L.; Küffer, A.; Buser, D.; Liu, Y. Osseointegration: The slow delivery of BMP-2 enhances osteoinductivity. Bone 2012, 51, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.B.; Kim, S.E.; Kim, H.E.; Kang, S.S.; Choi, K.H.; Jeong, C.M.; Lee, J.Y.; Shin, S.W. Effects of anodized implants coated with Escherichia coli-derived rhBMP-2 in beagle dogs. Int. J. Oral Maxillofac. Surg. 2012, 41, 1577–1584. [Google Scholar] [CrossRef]
- Nikolidakis, D.; Meijer, G.J.; Oortgiesen, D.A.W.; Walboomers, X.F.; Jansen, J.A. The effect of a low dose of transforming growth factor β1 (TGF-β1) on the early bone-healing around oral implants inserted in trabecular bone. Biomaterials 2009, 30, 94–99. [Google Scholar] [CrossRef]
- Wikesjö, U.M.E.; Huang, Y.H.; Xiropaidis, A.V.; Sorensen, R.G.; Rohrer, M.D.; Prasad, H.S.; Wozney, J.M.; Hall, J. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior maxilla (Type IV bone) in non-human primates. J. Clin. Periodontol. 2008, 35, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.E.; Xiropaidis, A.V.; Qahash, M.; Lim, W.H.; Sorensen, R.G.; Rohrer, M.D.; Wozney, J.M.; Hall, J. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs. J. Clin. Periodontol. 2008, 35, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Wang, Z.; Wang, Y.; Wang, J.; Cheng, X. The Effect of Combination of Recombinant Human Bone Morphogenetic Protein-2 and Basic Fibroblast Growth Factor or Insulin-Like Growth Factor-I on Dental Implant Osseointegration by Confocal Laser Scanning Microscopy. J. Periodontol. 2006, 77, 357–363. [Google Scholar] [CrossRef]
- Anitua, E.A. Enhancement of osseointegration by generating a dynamic implant surface. J. Oral Implantol. 2006, 32, 72–76. [Google Scholar] [CrossRef]
- Barros, R.R.M.; Novaes, A.B.; Papalexiou, V.; Souza, S.L.S.; Taba, M.; Palioto, D.B.; Grisi, M.F.M. Effect of biofunctionalized implant surface on osseointegration—A histomorphometric study in dogs. Braz. Dent. J. 2009, 20, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Fiorellini, J.; Glindmann, S.; Salcedo, J.; Weber, H.-P.; Park, C.-J.; Sarmiento, H. The Effect of Osteopontin and an Osteopontin-Derived Synthetic Peptide Coating on Osseointegration of Implants in a Canine Model. Int. J. Periodontics Restor. Dent. 2016, 36, e88–e94. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.-B.; Jung, S.Y.; Park, C.Y.; Kang, H.K.; Yeo, I.S.L.; Min, B.M. A Vitronectin-derived bioactive peptide improves bone healing capacity of SLA titanium surfaces. Materials 2019, 12, 3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadlinger, B.; Bierbaum, S.; Grimmer, S.; Schulz, M.C.; Kuhlisch, E.; Scharnweber, D.; Eckelt, U.; Mai, R. Increased bone formation around coated implants. J. Clin. Periodontol. 2009, 36, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Schliephake, H.; Aref, A.; Scharnweber, D.; Bierbaum, S.; Sewing, A. Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: Organic coatings. Clin. Oral Implant. Res. 2009, 20, 31–37. [Google Scholar] [CrossRef]
- Stadlinger, B.; Pilling, E.; Huhle, M.; Mai, R.; Bierbaum, S.; Scharnweber, D.; Kuhlisch, E.; Loukota, R.; Eckelt, U. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: An animal study. Int. J. Oral Maxillofac. Surg. 2008, 37, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Morra, M.; Cassinelli, C.; Cascardo, G.; Bollati, D.; Rodriguez, Y.; Baena, R. Multifunctional implant surfaces: Surface characterization and bone response to acid-etched Ti implants surface-modified by fibrillar collagen I. J. Biomed. Mater. Res. Part A 2010, 94, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Sverzut, A.T.; Crippa, G.E.; Morra, M.; De Oliveira, P.T.; Beloti, M.M.; Rosa, A.L. Effects of type I collagen coating on titanium osseointegration: Histomorphometric, cellular and molecular analyses. Biomed. Mater. 2012, 7, 035007. [Google Scholar] [CrossRef]
- Scarano, A.; Lorusso, F.; Orsini, T.; Morra, M.; Iviglia, G.; Valbonetti, L. Biomimetic surfaces coated with covalently immobilized collagen type I: An x-ray photoelectron spectroscopy, atomic force microscopy, micro-CT and histomorphometrical study in rabbits. Int. J. Mol. Sci. 2019, 20, 724. [Google Scholar] [CrossRef] [Green Version]
- Morra, M.; Cassinelli, C.; Cascardo, G.; Fini, M.; Giavaresi, G.; Giardino, R. Covalently-Linked hyaluronan promotes bone formation around Ti implants in a rabbit model. J. Orthop. Res. 2009, 27, 657–663. [Google Scholar] [CrossRef]
- Lupi, S.M.; Baena, A.R.Y.; Cassinelli, C.; Iviglia, G.; Tallarico, M.; Morra, M.; Baena, R.R.Y. Covalently-linked hyaluronan versus acid etched titanium dental implants: A crossover RCT in humans. Int. J. Mol. Sci. 2019, 20, 763. [Google Scholar] [CrossRef] [Green Version]
- Schliephake, H.; Scharnweber, D.; Roesseler, S.; Dard, M.; Sewing, A.; Aref, A. Biomimetic calcium phosphate composite coating of dental implants. Int. J. Oral Maxillofac. Implant. 2006, 21, 738–746. [Google Scholar]
- Werner, S.; Huck, O.; Frisch, B.; Vautier, D.; Elkaim, R.; Voegel, J.C.; Brunel, G.; Tenenbaum, H. The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials 2009, 30, 2291–2301. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.L.; He, F.M.; Yang, X.F.; Wang, X.X.; Zhao, S.F. In vivo evaluation of bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-assembly. J. Biomed. Mater. Res. Part A 2009, 90, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Schliephake, H.; Scharnweber, D. Chemical and biological functionalization of titanium for dental implants. J. Mater. Chem. 2008, 18, 2404–2414. [Google Scholar] [CrossRef]
- Lan, J.; Wang, Z.F.; Shi, B.; Xia, H.B.; Cheng, X.R. The influence of recombinant human BMP-2 on bone-implant osseointegration: Biomechanical testing and histomorphometric analysis. Int. J. Oral Maxillofac. Surg. 2007, 36, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Stadlinger, B.; Pilling, E.; Huhle, M.; Mai, R.; Bierbaum, S.; Bernhardt, R.; Scharnweber, D.; Kuhlisch, E.; Hempel, U.; Eckelt, U. Influence of extracellular matrix coatings on implant stability and osseointegration: An animal study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 222–231. [Google Scholar] [CrossRef]
- Morra, M.; Cassinelli, C.; Cascardo, G.; Mazzucco, L.; Borzini, P.; Fini, M.; Giavaresi, G.; Giardino, R. Collagen I-coated titanium surfaces: Mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J. Biomed. Mater. Res. Part A 2006, 78, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, S.M.; Lee, I.S. Immobilizing bioactive molecules onto titanium implants to improve osseointegration. Surf. Coat. Technol. 2013, 228, S312–S317. [Google Scholar] [CrossRef]
- Xiao, S.-J.; Kenausis, G.; Textor, M. Biochemical modification of titanium surfaces. In Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 417–455. ISBN 978-3-642-56486-4. [Google Scholar]
- Subramani, K.; Mathew, R.T. Titanium surface modification techniques for dental implants-from microscale to Nanoscale. In Emerging Nanotechnologies in Dentistry; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9781455778621. [Google Scholar]
- Decher, G.; Hong, J.D.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Film. 1992, 210–211, 831–835. [Google Scholar] [CrossRef]
- Vander Straeten, A.; Lefèvre, D.; Demoustier-Champagne, S.; Dupont-Gillain, C. Protein-based polyelectrolyte multilayers. Adv. Colloid Interface Sci. 2020, 280, 102161. [Google Scholar] [CrossRef] [PubMed]
- Panayotov, I.V.; Vladimirov, B.S.; Dutilleul, P.-Y.C.; Levallois, B.; Cuisinier, F. Strategies for immobilization of bioactive organic molecules on titanium implant surfaces—A review. Folia Med. 2015, 57, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Katz, B.Z.; Lafrenie, R.M.; Yamada, K.M. Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann. N. Y. Acad. Sci. 2006, 857, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Cell-extracellular matrix adhesion assay. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lebaron, R.G.; Athanasiou, K.A. Extracellular matrix cell adhesion peptides: Functional applications in orthopedic materials. Tissue Eng. 2000, 6, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Grzesik, W.J.; Robey, P.G. Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 1994, 9, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Massia, S.P.; Hubbell, J.A. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann. N. Y. Acad. Sci. 1990, 589, 261–270. [Google Scholar] [CrossRef]
- Germanier, Y.; Tosatti, S.; Broggini, N.; Textor, M.; Buser, D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin. Oral Implant. Res. 2006, 17, 251–257. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, S.; Jo, S.B.; Kang, H.K.; Jung, S.Y.; Kim, S.W.; Min, B.-M.; Yeo, I.-S.L. A laminin-211-derived bioactive peptide promotes the osseointegration of a sandblasted, large-grit, acid-etched titanium implant. J. Biomed. Mater. Res. A 2020, 108, 1214–1222. [Google Scholar] [CrossRef]
- Min, S.-K.; Kang, H.K.; Jung, S.Y.; Jang, D.H.; Min, B.-M. A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death Differ. 2018, 25, 268–281. [Google Scholar] [CrossRef]
- Timpl, R.; Rohde, H.; Robey, P.G.; Rennard, S.I.; Foidart, J.M.; Martin, G.R. Laminin—A glycoprotein from basement membranes. J. Biol. Chem. 1979, 254, 9933–9937. [Google Scholar] [CrossRef]
- De Jonge, L.T.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Jansen, J.A. Organic-inorganic surface modifications for titanium implant surfaces. Pharm. Res. 2008, 25, 2357–2369. [Google Scholar] [CrossRef] [Green Version]
- Chappard, D.; Aguado, E.; Huré, G.; Grizon, F.; Basle, M.F. The early remodeling phases around titanium implants: A histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int. J. Oral Maxillofac. Implant. 1999, 14, 189–196. [Google Scholar]
- Solheim, E. Growth factors in bone. Int. Orthop. 1998, 22, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toosi, S.; Behravan, J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. BioFactors 2020, 46, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Reddi, A.H. Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Maureen Owen revisited. Clin. Orthop. Relat. Res. 1995, 313, 115–119. [Google Scholar] [PubMed]
- Becker, J.; Kirsch, A.; Schwarz, F.; Chatzinikolaidou, M.; Rothamel, D.; Lekovic, V.; Laub, M.; Jennissen, H.P. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin. Oral Investig. 2006, 10, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.-Y.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Lee, J.-H.; Heo, J.-M. Biochemical Responses of Anodized Titanium Implants with a Poly(lactide-co-glycolide)/Bone Morphogenetic Protein-2 Submicron Particle Coating. Part 2: An In Vivo Study. Int. J. Oral Maxillofac. Implant. 2015, 30, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Koak, J.Y.; Heo, S.J.; Kim, S.K.; Lee, S.J.; Nam, S.Y. Osseointegration of anodized titanium implants coated with poly(lactide-co-glycolide)/basic fibroblast growth factor by electrospray. Int. J. Oral Maxillofac. Implant. 2010, 25, 315–320. [Google Scholar]
- Park, J.-M.; Koak, J.-Y.; Jang, J.-H.; Han, C.-H.; Kim, S.-K.; Heo, S.-J. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int. J. Oral Maxillofac. Implant. 2006, 21, 859–866. [Google Scholar] [PubMed]
- Schliephake, H.; Rublack, J.; Förster, A.; Schwenzer, B.; Reichert, J.; Scharnweber, D. Functionalization of titanium implants using a modular system for binding and release of VEGF enhances bone-implant contact in a rodent model. J. Clin. Periodontol. 2015, 42, 302–310. [Google Scholar] [CrossRef]
- Mizuno, M.; Fujisawa, R.; Kuboki, Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 2000, 184, 207–213. [Google Scholar] [CrossRef]
- Salbach, J.; Rachner, T.D.; Rauner, M.; Hempel, U.; Anderegg, U.; Franz, S.; Simon, J.-C.; Hofbauer, L.C. Regenerative potential of glycosaminoglycans for skin and bone. J. Mol. Med. 2012, 90, 625–635. [Google Scholar] [CrossRef]
- Kellesarian, S.V.; Malignaggi, V.R.; Kellesarian, T.V.; Bashir Ahmed, H.; Javed, F. Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2018, 47, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.K.; Thorwarth, M.; Schmidt, M.; Schlegel, K.A.; Schultze-Mosgau, S. Comparative analysis of osseointegration of titanium implants with acid-etched surfaces and different biomolecular coatings. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 726–736. [Google Scholar] [CrossRef]
- Raphel, J.; Karlsson, J.; Galli, S.; Wennerberg, A.; Lindsay, C.; Haugh, M.G.; Pajarinen, J.; Goodman, S.B.; Jimbo, R.; Andersson, M.; et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials 2016, 83, 269–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.-C.; Ho, K.-N.; Feng, S.-W.; Huang, H.-M.; Chang, C.-H.; Lin, C.-T.; Teng, N.-C.; Pan, Y.H.; Chang, W.-J. Fibronectin-grafted titanium dental implants: An in vivo study. Biomed. Res. Int. 2016, 2016, 2414809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tecniques | Description | Biomolecules Reported from the Analyzed In Vivo Studies |
---|---|---|
Adsorption | Immersion or soaking of the implant in a solution containing the selected biomolecule | BMP-2 [10], non-BMPs growth factors [11,12,13,14,15,16,17,18], peptides [19,20,21] and ECM components [22,23,24] |
Covalent bonding | Implant surface functionalization through amine, hydroxyl, and carboxyl groups that react with biomolecules and stabilize them to the surface | ECM components such as type I collagen [25,26,27] or hyaluronic acid [28,29] |
Anodic Polarization | Molecules and nanoparticles previously adsorbed to the oxide/electrolytes interface may be incorporated in the growing anodic oxide layer | collagen [30] |
Layer-by-layer technique | Alternate adsorption of opposite-charged polyelectrolytes, which are stabilized because of attraction forces, creating a self-assembled polyelectrolytic multilayer | laminin-5 [31], peptides [32] |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Germanier et al. (2006) [48] | RDG sequences, RGD sequences | 1: SLA (control) 2: SLA + PLL-g-PEG 3: SLA + PLL-g-PEG/PEG-RDG 4: SLA + PLL-g-PEG/PEG-RGD | Miniature pig superior maxilla | 2 and 4 weeks | BIC (2 w): 1: 43.62% 4; 2: 55.94%; 3: 48.54%; 4: 61.68% BIC (4 w): NSD |
Barros et al. (2009) [19] | Bioactive peptide | 1: SA 2: SA + HA 3: SA + HA + low concentration (20 µg/mL) bioactive peptide 4: SA + HA + high concentration (200 µg/mL) bioactive peptide | Dog mandible | 8 weeks | BIC: NSD NFB: NSD |
Yang et al. (2009) [32] | FGF-FN | 1: ANO 2: ANO + 65 µg/mL FGF-FN | Rabbit femur | 4, 8 and 12 weeks | BIC (4 w): 1: 16.75% *; 2: 23.25% RTQ (4 w): NSD BIC (8 w): NSD RTQ (8 w): 2 > 1 * BIC (12 w): NSD RTQ (12 w): 2 > 1 * |
Fiorellini et al. (2016) [20] | rhOPN, OC-1016 | 1: TPS 2: TPS + 200 µg/mL rhOPN 3: TPS +25 µg/mL OC-1016 4: TPS +50 µg/mL OC-1016 5: TPS +100 µg/mL OC-1016 6: TPS + 200 µg/mL OC-1016 | Dog mandible | 4 and 12 weeks | BIC (4 w): 1: 45% 2–6; 2: 65.6%; 3: 61.3%; 4: 64.9%; 5: 73.1%; 6: 70.3% NFB (4 w): 1: 54.5% 2–6; 2: 70.5%; 3: 67.9%; 4: 69.3%; 5: 76.9%; 6: 72.6% BIC (12 w): 1: 46.5% 2–6*; 2: 62.5%; 3: 58.3%; 4: 59.5%; 5: 62.9%; 6: 63.5% NFB (12 w): NSD |
Cho et al. (2019) [21] | VpN-16 | 1: Machined 2: SLA 3: SLA + scrambled VpN-16 4: SLA + 1 mg/cm2 VpN-16 | Rabbit tibia | 2 weeks | BIC: NSD NFB: NSD |
Choi et al. (2020) [49] | Ln2-P3 | 1: SLA 2: SLA + 1 mg/cm2 Ln2-P3 | Rabbit tibia | 9 and 11 days | BIC (9 d): 1: 23.4% **; 2: 56.2% BIC (11 d): NSD NFB (9 and 11 d): NSD |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Becker et al. (2006) [57] | rhBMP-2 | 1: SA 2: CSA 3: CSA + rhBMP-2: 596 ng/cm2 4: CSA + rhBMP-2: 819 ng/cm2 | Dog mandible and tibia | 4 weeks | BIC (mandible and tibia): NSD Bone density (≤1 mm from surface, tibia): NSD Bone density (>1 mm from surface; tibia): NSD |
Lan et al. (2007) [34] | rhBMP-2 | 1: 1 mg rhBMP-2 2: Non-coated | Rabbit femur | 4, 8 and 12 weeks | NFB (4 and 8 w): NSD Pull-out test (12 w): 1: 36.5 N; 2:27.6 N * |
Liu et al. (2007) [10] | BMP-2 | 1: Non-coated 2: Ti + CaP 3: Ti + CaP + BMP-2 adsorbed 4: Ti + CaP + BMP-2 incorporated 5: Ti + CaP + BMP-2 adsorbed + incorporated 6: Ti + BMP-2 adsorbed | Miniature pig superior maxilla | 3 weeks | NFB: NSD |
Wikesjo et al. (2008a) [15] | rhBMP-2 | 1: TPO 2: TPO + rhBMP-2 0.2 mg/mL 3: TPO + rhBMP-2 4 mg/mL | Dog mandible—molar region | 8 weeks | NFB: NSD BIC: NSD |
Wikesjo et al. (2008b) [16] | rhBMP-2 | 1: TPO 2: TPO + rhBMP-2 0.2 mg/mL 3: TPO + rhBMP-2 2 mg/mL | Monkey superior maxilla–molar region | 16 weeks | NFB: NSD BIC: 1: 74.4%; 2: 36.6% *; 3: 43% ** |
Huh et al. (2012) [13] | ErhBMP-2 | 1: ANO 2: ANO + ErhBMP-2 | Dog mandible | 8 weeks | BIC: NSD Bone density between threads: NSD ISQ: 1:74.27; 2:79.21 * |
Hunziker et al. (2012) [12] | BMP-2 | 1: Non-coated 2: Ti + CaP 3: Ti + CaP + 10 µg BMP-2 adsorbed 4: Ti + CaP + 12.95 µg BMP-2 incorporated 5: Ti + CaP + BMP-2 adsorbed + incorporated 6: Ti + BMP-2 adsorbed | Miniature pig superior maxilla | 1, 2, and 3 weeks | NFB (1 w): NSD NFB (2 w): NSD NFB (3 w): NSD |
Yang et al. (2014) [32] | BMP-2 | 1: Ti non-coated 2: Ti coated by Hap 3: Ti coated by 800 mg Hep and 50 ng/mL BMP-2 4: Ti coated by Hap, 800 mg Hep and 50 ng/mL BMP-2 | Rabbit femur and tibia | 4 weeks | BIC: NSD RTQ: NSD NFB: NSD |
Yoo et al. (2015) [58] | rhBMP-2 | 1: ANO 2: ANO + 80 µL PLGA + 50 µg/mL rhBMP-2 | Rabbit tibia | 3 and 7 weeks | BIC (3 w): NSD BIC (7 w):1: NSD |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Anitua (2006) [18] | PRGF | 1: Non-coated 2: Coated with PRGF | Goat tibia and radius | 8 weeks | BIC: 1: 21.89% **; 2: 51.28% |
Lan et al. (2006) [17] | rhBMP-2 rhbFGF rhIGF-1 | 1: PLA 2: PLA + 1 mg rhBMP-2 3: PLA + 1 mg rhBMP-2 + 200 µg rhbFGF 4: PLA + 1 mg rhBMP-2 + 250 µg rhIGF-1 | Rabbit femur | 4 and 8 weeks | NFB (4 w): NSD NFB (8 w): NSD |
Park et al. (2006) [60] | FGF-FN | 1: ANO 2: ANO + 65 µg/mL FGF-FN | Rabbit tibia | 12 weeks | BIC: 1: 29.47% *; 2: 36.91% RTQ: 1: 37.6 Ncm *; 2: 44.8 Ncm |
Nikolidakis et al. (2009) [14] | TGF- β1 | 1: SA 2: SA + 0.5 µg TGF-β1 3: SA + 1 µg TGF-β1 | Goat femoral condyle | 6 weeks | BIC: 1: 65%; 2: 48%; 3: 45% * |
Lee et al. (2010) [59] | bFGF | 1: ANO 2: ANO + 0.02 mL PLGA 3: ANO + 0.02 mL PLGA + 10 ng bFGF 4: ANO + 0.02 mL PLGA + 100 ng bFGF | Rabbit tibia | 12 weeks | BIC: 1: 31.4% *; 2: 33.6% *; 3: 37%; 4: 44.7% |
Schliephake et al. (2015) [61] | rhVEGF | 1: SA 2: SA + ODN-AS 3: SA + (ODN-AS + rhVEGF) | Rat tibia | 1, 4 and 13 weeks | BIC (1 w): NSD BIC (4 w): 1: 40.6% 3; 2: 40.2% 3; 3: 60.1% BIC: NSD |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Morra et al. (2006) [36] | Collagen | 1: ANO 2: ANO coated with collagen | Rabbit tibia | 4 weeks | BIC: 1: 36.9% *; 2: 63.7% NFB: NSD |
Schliephake et al. (2006) [30] | Collagen | 1: MAC 2: MAC + type I collagen 3: MAC + calcium phosphate 4: MAC + calcium phosphate + type I collagen | Dog mandible | 1 and 3 months | BIC (1 m): 1: 31.5% 4; 2: 41.9%; 3: 45.2%; 4: 62.6% NFB (1 m): 1: 16.1% 2–4; 2: 22.9%; 3: 33%; 4: 40.9% BIC (3 m): 1: 41.2% 2–4; 2: 60.2%; 3: 61.7%; 4: 59% NFB (3 m): 1: 40.6% 2–4; 2: 62.6%; 3: 58.5%; 4: 67.3% |
Morra et al. (2010) [25] | Collagen | 1: AE 2: AE coated withtype I collagen | Rabbit tibia and femur | 2 and 4 weeks | BIC (2 w):2 > 1 * BIC (4 w): NSD |
Sverzut et al. (2012) [26] | Collagen | 1: AE 2: AE coated with type I collagen | Dog mandible | 3 and 8 weeks | BIC (3 w): NSD BABT (3 w): NSD BAMA (3 w): NSD BIC (8 w): NSD BABT (8 w): NSD BAMA (8 w): NSD |
Scarano et al. (2019) [27] | Collagen | 1: SA 2: SA coated with type I collagen | Rabbit femur | 15, 30 and 60 days | BIC (15 d): 1: 22.4% *; 2: 27.5% BAIT (15 d): NSD BAOT (15 d): 1: 19% *; 2: 21.8% BIC (30 d): 1: 51.2% *; 2: 55.3% BAIT (30 d): 1: 28% *; 2: 39% BAOT (30 d): 1: 36% *; 2: 38% BIC (60 d): 1: 56.3% *; 2: 63.6% BAIT (60 d): 1: 35% *; 2: 42% BAOT (60 d): 1: 36% *; 2: 44% |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Stadlinger et al. (2007) [35] | Collagen CS rhBMP-4 | 1: Coated with COL 2: Coated with COL and CS 3: Coated with type COL and CS and rhBMP-4 | Miniature pig mandible | 22 weeks | BIC: NSD ISQ: NSD |
Stadlinger et al. (2008) [24] | Collagen CS rhBMP-4 | 1: Coated with COL 2: Coated with COL and CS 3: Coated with COL and CS and rhBMP-4 | Miniature pig mandible | 6 months | BIC: 1: 30%; 2: 40%; 3: 27% 2 |
Schliephake et al. (2009) [23] | Collagen CS RGD sequence srhBMP-2 | 1: Machined 2: DAE 3: DAE coated with RGD sequences 4: DAE coated with COL 5: DAE coated with COL and CS 6: coll/CS + rhBMP-2 | Dog mandible | 4 and 12 weeks | BIC (4 w): 1: 25.4% 2,3,4,6; 2: 40.9%; 3: 41.4%; 4: 40.4%; 5: 31.1%; 6: 43.7% BIC (12 w): 1: 37.7% 3,5,6; 2: 57.6%; 3: 59.4%; 4: 56.3%; 5: 66.4%; 6: 60.6% |
Stadlinger et al. (2009) [22] | Collagen CS | 1: SA 2: SA coated by COL and low dose CS 3: SA coated by COL and high dose CS | Miniature pigmandible | 1 weeks and 2 months | BIC (1 w): 1: 51.6% 2,3; 2: 68.4%; 3: 63.1% BIC (2 m): NSD ISQ (1 and 2 m): NSD |
Mueller et al. (2011) [65] | Collagen BMP-2 VEGF-165 FGF-2 | 1: AE 2: coated with 10 µg COL 3: 2 + 1 µg BMP-2 4: 2 + 10 µg BMP-2 5: 2 + 1 µg VEGF-165 6: 2 + 10 µg VEGF-165 7: 2 + 1 µg FGF-2 8: 2 + 10 µg FGF-2 9: 2 + 1 µg of BMP-2, VEGF-165 and FGF-2 10: 2 + 10 µg of BMP-2, VEGF-165 and FGF-2 | Pig frontal bone | 2, 4 and 8 weeks | BIC (2 w): NSD BIC (4 w): 1: 39.4% 2,5,6,7; 2: 50.4%; 3: 46.8%; 4: 46.9%; 5: 64.9%; 6: 68.5%; 7: 54.8%; 8:74.1%; 9: 43.2%; 10: 44.2% BIC (8 w): NSD |
Author (Year) | Biomolecule of Interest | Tested Surfaces | Animal Model | Time from Surgery | Results |
---|---|---|---|---|---|
Morra et al. (2009) [28] | Hyaluronic acid | 1: Non-coated 2: Coated with 800-kDa HY | Rabbit tibia | 4 weeks | BIC (cortical): 1: 55% *; 2: 69.7% BIC (trabecular): 1: 22.5% **; 2: 69% Push-out: NSD NFB (cortical): NSD NFB (trabecular): 1:30.3% *; 2: 56.3% BMI: 1: 79.1% *; 2: 90.6% |
Raphel et al. (2016) [66] | Scrambled ELP RGD ELP | 1: Non-coated 2: Coated with scrambled ELP 3: Coated with RGD-ELP | Rat tibia and femur | 1, 4, and 8 weeks | BIC (1 w): 3 > 2 * RTQ (1 w): 3 > 2 * BIC (4 w): NSD RTQ (4 w): NSD BIC (8 w): NSD RTQ (8 w): NSD |
Chang et al. (2016) [67] | Fibronectin | 1: Non-coated 2: Coated with fibronectin | Dog mandible | 2, 4, and 8 weeks | ISQ (2 and 4 w): 2 > 1 ** ISQ (8 w): NSD NFB (2, 4 and 8 w): NSD |
Lupi et al. (2019) [29] | Hyaluronic acid | 1: Non-coated 2: Coated with HY | Humans | 36 months | Clinical non-inferiority of HY coated surfaces compared to the non-coated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupi, S.M.; Torchia, M.; Rizzo, S. Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies. Materials 2021, 14, 2798. https://doi.org/10.3390/ma14112798
Lupi SM, Torchia M, Rizzo S. Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies. Materials. 2021; 14(11):2798. https://doi.org/10.3390/ma14112798
Chicago/Turabian StyleLupi, Saturnino Marco, Mirko Torchia, and Silvana Rizzo. 2021. "Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies" Materials 14, no. 11: 2798. https://doi.org/10.3390/ma14112798
APA StyleLupi, S. M., Torchia, M., & Rizzo, S. (2021). Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies. Materials, 14(11), 2798. https://doi.org/10.3390/ma14112798