Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The pH Effect
3.2. Contact Time Effect
3.3. The Impact of Temperature on the Adsorption Process
3.4. The Impact of Rotation Speed on the Adsorption Process
3.5. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kameda, T.; Suzuki, Y.; Yoshioka, T. Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide. J. Environ. Chem. Eng. 2014, 2, 2045–2049. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- El-Din, A.F.T.; El-Khouly, M.E.; Elshehy, E.A.; Atia, A.A.; El-Said, W.A. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Microporous Mesoporous Mater. 2018, 265, 211–218. [Google Scholar] [CrossRef]
- Sunil, K.; Karunakaran, G.; Yadav, S.; Padaki, M.; Zadorozhnyy, V.; Pai, R.K. Al-Ti2O6 a mixed metal oxide based composite membrane: A unique membrane for removal of heavy metals. Chem. Eng. J. 2018, 348, 678–684. [Google Scholar] [CrossRef]
- Patil, S.S.; Shedbalkar, U.U.; Truskewycz, A.; Chopade, B.A.; Ball, A.S. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environ. Technol. Innov. 2016, 5, 10–21. [Google Scholar] [CrossRef]
- Singh, R.; Bhateria, R. Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega 2020, 5, 10826–10837. [Google Scholar] [CrossRef]
- Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. J. Environ. Chem. Eng. 2016, 4, 4237–4247. [Google Scholar] [CrossRef]
- Palchoudhury, S.; Lead, J.R. A facile and cost-effective method for separation of oil–water mixtures using polymer-coated iron oxide nanoparticles. Environ. Sci. Technol. 2014, 48, 14558–14563. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Xie, J.; Mirshahghassemi, S.; Lead, J. Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Adv. 2020, 10, 3266. [Google Scholar] [CrossRef] [Green Version]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Rahman, M.T.; Hao, K.W.; Hidajat, K.; Uddin, M.S. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem. Eng. J. 2013, 225, 607–615. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr (VI) removal. J. Mater. Sci. 2014, 49, 4236–4245. [Google Scholar] [CrossRef]
- Ngomsik, A.F.; Bee, A.; Talbot, D.; Cote, G. Magnetic solid liquid extraction of Eu (III), La (III), Ni (II) and Co (II) with maghemite nanoparticles. Sep. Purif. Technol. 2012, 86, 1–8. [Google Scholar] [CrossRef]
- Tan, L.; Xu, J.; Xue, X.; Lou, Z.; Zhu, J.; Baig, S.A.; Xu, X. Multifunctional nanocomposite Fe3O4@SiO2-mPD/SP for selective removal of Pb (II) and Cr (VI) from aqueous solutions. RSC Adv. 2014, 4, 45920–45929. [Google Scholar] [CrossRef]
- Tu, Y.J.; You, C.F.; Chang, C.K.; Wang, S.L.; Chan, T.S. Arsenate adsorption from water using a novel fabricated copper ferrite. Chem. Eng. J. 2012, 440–448. [Google Scholar] [CrossRef]
- Abbas, H.; Manasrah, A.D.; Abidi Saad, A.; Sebakhy, K.O.; Bouhadda, Y. Adsorption of Algerian asphaltenes onto synthesized maghemite iron oxide nanoparticles. Pet. Chem. 2021, 61, 67–75. [Google Scholar] [CrossRef]
- Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 2017, 7, 7672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, S.; Han, M.; Su, Q.; Xia, L.; Hui, Z. Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr (VI) and Cu (II) in mixed solution. Water 2020, 12, 446. [Google Scholar] [CrossRef] [Green Version]
- Khayat Sarkar, Z.; Khayat Sarkar, F. Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as an effective adsorbent. Int. J. Nanosci. Nanotechnol. 2013, 9, 109–114. [Google Scholar]
- Arbabi, M.; Hemati, S.; Amiri, M. Removal of lead ions from industrial wastewater: A review of Removal methods. Int. J. Epidemiol. Res. 2015, 2, 105–109. [Google Scholar]
- Jalali, R.; Ghafourian, H.; Asef, Y.; Davarpanah, S.; Sepehr, S. Removal and recovery of lead using nonliving biomass of marine algae. J. Hazard. Mater. 2002, 92, 253–262. [Google Scholar] [CrossRef]
- Iqbal, M.; Edyvean, R. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner. Eng. 2004, 17, 217–223. [Google Scholar] [CrossRef]
- Sekhar, K.C.; Kamala, C.T.; Chary, N.S.; Sastry, A.R.K.; Rao, T.N.; Vairamani, M. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. J. Hazard. Mater. 2004, 108, 111–117. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Public Health Service. Toxicological Profile for Lead; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2007.
- Järup, L. Hazards of heavy metal contamination. Brit. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, F.; Li, M.-M.; Ye, H.; Zhao, B.-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+ and Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 2012, 211–212, 366–372. [Google Scholar] [CrossRef]
- Lasheen, M.R.; El-Sherif, I.Y.; Sabry, D.Y.; El-Wakeel, S.T.; El-Shahat, M.F. Removal and recovery of Cr (VI) by magnetite nanoparticles. Desalin. Water Treat. 2014, 52, 1–13. [Google Scholar] [CrossRef]
- Covaliu, C.I.; Păun, I.; Vasile, E. New application of magnetite nanomaterial for a cationic surfactant removal from wastewater. Rev. Rom. Mater. 2020, 50, 301–306. [Google Scholar]
- Rajput, S.; Pittman, C.U., Jr.; Mohan, D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 2016, 468, 334–346. [Google Scholar] [CrossRef]
- Nassar, N.N. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef]
- Hoang, V.T.; Lam, D.T.; Thinh, N.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb (II) and Ni (II) from aqueous solution. Mat. Sci. Eng. C 2010, 30, 304–310. [Google Scholar]
- Madhu, K.; Pittman, U.C., Jr.; Mohan, D. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132. [Google Scholar]
- Abu, Z.M.B.; Zayed, B.Z.S.; Tay, W.J.D.; Kus, H. Mohammad Shahab Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohyd. Polym. 2013, 91, 322–332. [Google Scholar]
- Aya, S.M.; Nadia, A.Y.; Ahmed, O.A.; El, N.; Selim, M.M. Removal of lead ions from industrial wastewater using magnetite loaded on silica support. Egypt. J. Chem. 2019, 62, 2163–2173. [Google Scholar]
- Jianming, Z.; Shangru, Z.; Shi, L.; Zuoyi, X.; Yu, S.; Qingda, A.; Ge, T. Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J 2013, 215–216, 461–471. [Google Scholar]
- Abdus, S.N.; Adekola, F.A. The influence of pH and adsorbent concentration on adsorption of lead and zinc on a natural Goethite. Afr. J. Environ. Sci. Technol. 2005, 6, 55–66. [Google Scholar]
- Akinbiyi, A. Removal of Lead from Aqueous Solutions by Adsorption Using Peat Moss. Master’s Thesis, University of Regina, Regina, SK, Canada, 2000; pp. 1–116. [Google Scholar]
- Parvathi, K. Lead biosorption onto waste beer yeast by product, a means to decontaminate effluents generated from battery manufacturing industry. Electron. J. Biotechnol. 2007, 10, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sridevi, V.; Chandana Lakshmi, M.V.V.; Satyavani, V. Adsorption isotherm studies of lead from aqueous solutions using fly. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 7021–7030. [Google Scholar]
- Krishnan, K.A.; Sheela, A.; Anirudhan, T.S. Kinetic and equilibrium modeling of liquid phase adsorption of Pb II Chelates on activated carbons. J. Chem. Technol. Biotechnol. 2003, 78, 642–653. [Google Scholar] [CrossRef]
- Lalhruaitluanga, H.; Jayaram, K.; Prasad, M.N.V.; Kumar, K.K. Pb (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (Bamboo)—A comparative study. J. Hazard. Mater. 2010, 175, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Anwar, J.; Umer, S.; Waheed-uz-Zaman, S.M.; Dar, A.; Anwar, S. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour. Technol. 2010, 101, 1752–1755. [Google Scholar] [CrossRef]
- Sekar, M.; Sakthi, V.; Rengaraj, S. Kinetics and equilibrium adsorption study of Pb (II) onto activated carbon prepared from coconut shell. J. Colloid Interface Sci. 2004, 279, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Lugo, V.; Hernandez-Lopez, S.; Barrera-Dıaz, C.; Urena-Nunez, F.; Bilyeu, B. A comparative study of natural, formaldehydetreated and copolymer-grated orange peel for Pb (II) adsorption under batch and continuous mode. J. Hazard. Mater. 2009, 161, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, S.; Saleemi, A.R.; Ahmad, M.M. Heavy metal uptake by agro based waste materials. Electron. J. Biotechnol. 2007, 10, 1–12. [Google Scholar] [CrossRef]
- Naiya, T.K.; Bhattacharya, A.K.; Das, S.K. Adsorption of Pb (II) by sawdust and neem bark from aqueous solutions. Environ. Prog. 2008, 27, 313–328. [Google Scholar] [CrossRef]
- Roonasi, P.; Holmgren, A. An ATR-FTIR study of sulphate sorption on magnetite; rate of adsorption, surface speciation, and effect of calcium ions. J. Colloid Interface Sci. 2009, 333, 27–32. [Google Scholar] [CrossRef]
- Johnson, S.B.; Franks, G.V.; Scales, P.J.; Boger, D.V.; Healy, T.W. Surface chemistry–rheology relationships in concentrated mineral suspensions. Int. J. Miner. Process. 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Simeonidis, K.; Mourdikoudis, S.; Moulla, M.; Tsiaoussis, I.; Martinez-Boubeta, C.; Angelakeris, M.; Dendrinou-Samara, C.; Kalogirou, O. Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J. Magn. Magn. Mater. 2007, 316, e1–e4. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A. Magnetite-hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng. B 2013, 178, 744. [Google Scholar] [CrossRef]
Adsorbent | Quantity of Adsorbent (g/L) | Solution Volume (mL) | pH | Contact Time (min) | Speed (rpm) | Temp. (°C) | Ci (mg/L) | Ƞ (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Fe3O4 | 0.05 | 100 | 4 | 30 | - | 25 | 50 | ≈84.00 | [6] |
6 | ≈85.00 | ||||||||
9 | ≈95.00 | ||||||||
Fe3O4 | 1.00 | 50 | 5 | - | - | 25 | 25 | 91.00 | [28] |
50 | 56.00 | ||||||||
100 | 31.00 | ||||||||
Fe3O4 | 10.00 | 10 | 5.5 | 1440 | 200 | 25 | 220 | 100.00 | [29] |
Chitosan/magnetite | 0.10 | 100 | 6 | 120 | - | Room temp. | 70 | 90.47 | [30] |
Magnetite (Fe3O4) nanospheres | 1.00 | 50 | 5 | - | - | 25 | 10 | >70.00 | [31] |
Fe3O4/cyclodextrin polymer | 12.00 | 10 | 5.5 | 120 | 230 | 25 | 100 | 99.50 | [32] |
PVP–Fe3O4 | - | - | 6.5 | 90 | 200 | - | 1 | 100.00 | [9] |
15% Fe3O4/SiO2 | 5.00 | 25 | 4.8 | 360 | - | Room temp. | 50 | 99.84 | [33] |
Fe3O4 @ SiO2–NH2 core-shell | 1.00 | 50 | 5.2 | 960 | - | 25 | 148 | ≈87.83 | [34] |
L-cysteine functionalized Fe3O4 | 1.00 | 50 | 6 | 60 | 200 | 25 | 50 | 45.00 | [16] |
2.00 | 99.00 | ||||||||
2.50 | 99.00 | ||||||||
Natural goethite | 40.00 | 25 | 5 | - | - | 30 | 750 | 100.00 | [35] |
Peat moss | 0.24 | 100 | 6 | 180 | 125 | 23±1 | 10 | 96.00 | [36] |
Waste beer yeast | 20.00 | - | 5 | 120 | 150 | - | 25–100 | 96.34 | [37] |
Coal fly ash | 1.50 | 50 | - | 240 | - | - | 100 | 90.37 | [38] |
Sawdust waste | 2.00 | 50 | 6.5 | 240 | 200 | 30 | 103.6 | 88.60 | [39] |
Activated bamboo charcoal | 1.00 | 100 | 5 | 360 | 150 | 29 | 60 | 83.01 | [40] |
Banana peels | 40.00 | - | 5 | 20 | 100 | 25 | 50 | 85.30 | [41] |
Coconut shell | 1.00 | 50 | 4.5 | 180 | 180 | - | 10 | 99.00 | [42] |
Natural orange peel | 10.00 | 12 | 5 | 60 | - | Room temp. | 30 | 99.00 | [43] |
Ficus Religiosa leaves | 10.00 | 100 | 4 | 45 | 200 | 50 | 100 | 80.00 | [44] |
Adsorbent | Langmuir Isotherm | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|---|
Fe3O4 | KL(L/mg) | RL | R2 | 1/n | n | KF (mg/g) | R2 |
0.60 | 0.68 | 0.93 | 0.10 | 9.25 | 1.45 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, O.; Covaliu, C.I.; Paraschiv, G.; Catrina, G.-A.; Niță-Lazăr, M.; Matei, E.; Biriş, S.Ș.; Tudor, P. Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater. Materials 2021, 14, 2831. https://doi.org/10.3390/ma14112831
Stoian O, Covaliu CI, Paraschiv G, Catrina G-A, Niță-Lazăr M, Matei E, Biriş SȘ, Tudor P. Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater. Materials. 2021; 14(11):2831. https://doi.org/10.3390/ma14112831
Chicago/Turabian StyleStoian, Oana, Cristina Ileana Covaliu, Gigel Paraschiv, Gina-Alina Catrina (Traistaru), Mihai Niță-Lazăr, Ecaterina Matei, Sorin Ștefan Biriş, and Paula Tudor. 2021. "Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater" Materials 14, no. 11: 2831. https://doi.org/10.3390/ma14112831
APA StyleStoian, O., Covaliu, C. I., Paraschiv, G., Catrina, G.-A., Niță-Lazăr, M., Matei, E., Biriş, S. Ș., & Tudor, P. (2021). Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater. Materials, 14(11), 2831. https://doi.org/10.3390/ma14112831