Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of Tb55Co30Fe15 Glassy Ribbons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lacheisserie, E.D.T.D. Magnetostriction: Theory and Applications of Magnetoelasticity; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Barandiarán, J.; Gutiérrez, J.; García-Arribas, A. Magneto-elasticity in amorphous ferromagnets: Basic principles and applications. Phys. Status Solidi A 2011, 208, 2258. [Google Scholar] [CrossRef]
- Abbundi, R.; Clark, A.E. Anomalous thermal expansion and magnetostriction of single crystal Tb0.27Dy0.73Fe2. IEEE Trans. Magn. 1977, 13, 1519–1520. [Google Scholar] [CrossRef]
- Jiles, D.C. The development of highly magnetostrictive rare earth-iron alloys. J. Phys. D Appl. Phys. 1994, 27, 1–11. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Zhang, H.; Chen, X.; Li, Y. Effect of copper on magnetostriction and mechanical properties of TbDyFe alloys. J. Rare Earth 2019, 37, 68–73. [Google Scholar] [CrossRef]
- Speliotis, A.; Niarchos, D. Magnetostrictive properties of amorphous and crystalline TbDyFe thin films. Sens. Actuators A 2003, 106, 298–301. [Google Scholar] [CrossRef]
- Jiang, C.B.; Liu, J.H.; Gao, F.; Xu, H.B. Large linear and Volume Magnetostriction in Fe-Ga Alloys. Mater. Sci. Forum 2007, 561–565, 1117–1122. [Google Scholar] [CrossRef]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater. Struct. 2011, 20, 043001. [Google Scholar] [CrossRef]
- Clark, A.E.; Wun-Fogle, M.; Restorff, J.B.; Lograsso, T.A. Magnetostrictive Properties of Galfenol Alloys Under Compressive Stress. Mater. Trans. 2002, 43, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.Z.; Guo, D.Q.; Xia, L.; Ding, D.; Chan, K.C. Magnetoelastic and magnetocaloric properties of Tb62.5Co37.5 amorphous alloy. J. Alloys Compd. 2017, 728, 747–751. [Google Scholar] [CrossRef]
- Xia, L.; Chan, K.C.; Zhao, L.; Ding, D.; Tang, B.Z. Magnetic properties and magnetostriction of a binary Dy50Co50 amorphous alloy. J. Non-Cryst. Solids 2018, 493, 29–32. [Google Scholar] [CrossRef]
- Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 1969, 10, 473–488. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, C. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 2003, 91, 115505. [Google Scholar] [CrossRef]
- Luo, Q.; Schwarz, B.; Mattern, N.; Eckert, J. Irreversible and reversible magnetic entropy change in a Dy-based bulk metallic glass. Intermetallics 2012, 30, 76–79. [Google Scholar] [CrossRef]
- Speliotis, T.; Niarchos, D. Extraordinary magnetization of amorphous TbDyFe films. Microelectron. Eng. 2013, 112, 183–187. [Google Scholar] [CrossRef]
- Stogne, O.V.; Zolotukhin, I.V.; Rapp, O. Spin-glass ordering in amorphous Tb–Cr alloys. Phys. Solid State 1999, 41, 1126–1129. [Google Scholar] [CrossRef]
- Wang, Y.T.; Bai, H.Y.; Pan, M.X.; Zhao, D.Q.; Wang, W.H. Multiple spin-glass-like behaviors in a Pr-based bulk metallic glass. Phys. Rev. B 2006, 74, 064422. [Google Scholar] [CrossRef]
- Luo, Q.; Schwarz, B.; Mattern, N.; Eckert, J. Giant irreversible positive to large reversible negative magnetic entropy change evolution in Tb-based bulk metallic glass. Phys. Rev. B 2010, 82, 024204. [Google Scholar] [CrossRef]
- Ma, L.Y.; Tang, B.Z.; Chan, K.C.; Zhao, L.; Tang, M.B.; Ding, D.; Xia, L. Formability and magnetic properties of Dy-Co binary amorphous alloys. AIP Adv. 2018, 8, 075215. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Jo, C.L.; Ding, D.; Dong, Y.D. Microstructure, lass forming ability and magnetic properties of Nd60Al20Fe20 glass forming alloys. J. Phys. D Appl. Phys. 2005, 38, 4335–4338. [Google Scholar] [CrossRef]
- Xia, L.; Fang, S.S.; Jo, C.L.; Dong, Y.D. Glass forming ability and microstructure of hard magnetic Nd60Al20Fe20 glass forming alloy. Intermetallics 2006, 14, 1098–1101. [Google Scholar] [CrossRef]
- Miedema, A.R.; Boom, R.; De Boer, F.R. On the heat of formation of solid alloys. J. Less-Common Met. 1975, 41, 283–298. [Google Scholar] [CrossRef]
- Speliotis, A.; Kalogirou, O.; Vouroutzis, N.; Niarchos, D. Magnetostrictive properties of amorphous and nanocrystalline TbDyFe films with Nb and Zr additives. J. Magn. Magn. Mater. 1998, 187, 17–22. [Google Scholar] [CrossRef]
- Speliotis, A.; Kalogirou, O.; Niarchos, D. Magnetostrictive properties of amorphous and partially crystalline TbDyFe thin films. J. Appl. Phys. 1997, 81, 5696. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chan, K.-C.; Zhao, L.; Ding, D.; Xia, L. Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of Tb55Co30Fe15 Glassy Ribbons. Materials 2021, 14, 3068. https://doi.org/10.3390/ma14113068
Wang X, Chan K-C, Zhao L, Ding D, Xia L. Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of Tb55Co30Fe15 Glassy Ribbons. Materials. 2021; 14(11):3068. https://doi.org/10.3390/ma14113068
Chicago/Turabian StyleWang, Xin, Kang-Cheung Chan, Lei Zhao, Ding Ding, and Lei Xia. 2021. "Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of Tb55Co30Fe15 Glassy Ribbons" Materials 14, no. 11: 3068. https://doi.org/10.3390/ma14113068
APA StyleWang, X., Chan, K. -C., Zhao, L., Ding, D., & Xia, L. (2021). Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of Tb55Co30Fe15 Glassy Ribbons. Materials, 14(11), 3068. https://doi.org/10.3390/ma14113068