The Influence of Rapid Solidification on Corrosion Behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 Alloy for Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Structural and Calorimetric Investigations
2.3. Corrosion Studies
2.4. Mechanical Tests
3. Results and Discussion
3.1. Structural and Calorimetric Investigations
3.2. Corrosion Behavior
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesarz-Andraczke, K.; Kania, A.; Młynarek, K.; Babilas, R. Amorphous and Crystalline Magnesium Alloys for Biomedical Applications. In Magnesium Alloys Structure and Properties [Working Title]; IntechOpen: London, UK, 2020; pp. 1–21. [Google Scholar] [CrossRef]
- Huang, J.; Ren, Y.; Jiang, Y.; Zhang, B.; Yang, K. In vivo study of degradable magnesium and magnesium alloy as bone implant. Front. Mater. Sci. China 2007, 1, 405–409. [Google Scholar] [CrossRef]
- Cha, P.R.; Han, H.S.; Yang, G.F.; Kim, Y.C.; Hong, K.H.; Lee, S.C.; Jung, J.Y.; Ahn, J.P.; Kim, Y.Y.; Cho, S.Y.; et al. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 2013, 3, 2367. [Google Scholar] [CrossRef] [Green Version]
- Cipriano, A.F.; Sallee, A.; Guan, R.G.; Zhao, Z.Y.; Tayoba, M.; Sanchez, J.; Liu, H. Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater. 2015, 12, 298–321. [Google Scholar] [CrossRef]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.C.; Al-Saadi, S.; Choudhary, L.; Harandi, S.E.; Singh, R. Magnesium implants: Prospects and challenges. Materials 2019, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Luo, A.A. Magnesium casting technology for structural applications. J. Magnes. Alloys 2013, 1, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Wei, Q.; Wang, J.; Jin, P.; Chen, M.; Ma, J. Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy. Mater. Res. Express 2020, 7, 116513. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Guo, Z.; Xiong, S. Effects of process parameters on morphology and distribution of externally solidified crystals in microstructure of magnesium alloy die castings. China Foundry 2018, 15, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Shastri, H.; Mondal, A.K.; Dutta, K.; Dieringa, H.; Kumar, S. Microstructural correlation with tensile and creep properties of AZ91 alloy in three casting techniques. J. Manuf. Process. 2020, 57, 566–573. [Google Scholar] [CrossRef]
- Alvarez-Lopez, M.; Pereda, M.D.; Valle, J.A.; Fernandez-Lorenzo, M.; Garcia-Alonso, M.C.; Ruano, O.A.; Escudero, M.L. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010, 6, 1763–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloys 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Han, H.S.; Loffredo, S.; Jun, I.; Edwards, J.; Kim, Y.C.; Seok, H.K.; Witte, F.; Mantovani, D.; Glyn-Jones, S. Current status and outlook on the clinical translation of biodegradable metals. Mater. Today 2019, 23, 57–71. [Google Scholar] [CrossRef]
- Zander, D.; Zumdick, N.A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys. Corros. Sci. 2015, 93, 222–233. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, C.; Hodgson, P.; Li, Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B 2014, 2, 1912–1933. [Google Scholar] [CrossRef]
- Ringe, J.D.; Dorst, A.; Farahmand, P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneim. -Forsch./Drug Res. 2010, 60, 267–272. [Google Scholar] [CrossRef]
- Maïmoun, L.; Brennan, T.C.; Badoud, I.; Dubois-Ferriere, V.; Rizzoli, R.; Ammann, P. Strontium ranelate improves implant osseointegration. Bone 2010, 46, 1436–1441. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Wang, Y.; Zhang, C.; Lv, H.; Lin, H.; Yu, W.; Huang, C. Effects of ytterbium addition and heat treatment on the mechanical properties and biocorrosion behaviors of Mg–Zn–Zr alloy. J. Magnes. Alloys 2020, 8, 499–509. [Google Scholar] [CrossRef]
- Yamasaki, M.; Hayashi, N.; Izumi, S.; Kawamura, Y. Corrosion behavior of rapidly solidified Mg-Zn-rare earth element alloys in NaCl solution. Corros. Sci. 2007, 49, 255–262. [Google Scholar] [CrossRef]
- Meagher, P.; O’Cearbhaill, E.D.; Byrne, J.H.; Browne, D.J. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools. Adv. Mater. 2016, 28, 5755–5762. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.N.; Xie, X.H.; Li, N.; Zheng, Y.F.; Qin, L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012, 8, 2360–2374. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, F.; Zhang, L.; Pan, H.; Song, K.; Tang, A. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. Mater. Sci. Eng. C 2017, 70, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Bornapour, M.; Celikin, M.; Cerruti, M.; Pekguleryuz, M. Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater. Sci. Eng. C 2014, 35, 267–282. [Google Scholar] [CrossRef]
- Chen, K.; Xie, X.; Tang, H.; Sun, H.; Qin, L.; Zheng, Y.; Gu, X.; Fan, Y. In vitro and in vivo degradation behavior of Mg–2Sr–Ca and Mg–2Sr–Zn alloys. Bioact. Mater. 2020, 5, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Mushahary, D.; Sravanthi, R.; Li, Y.; Kumar, M.J.; Harishankar, N.; Hodgson, P.D.; Wen, C.; Pande, G. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int. J. Nanomed. 2013, 8, 2887–2902. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Li, J.; Li, J.; Zhang, Y.; Xu, Y. Effects of Sr on the microstructure, mechanical properties and corrosion behavior of Mg-2Zn-xSr alloys. J. Mater. Sci. Mater. Med. 2018, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pang, S.; Liu, Y.; Sun, L.; Liaw, P.K.; Zhang, T. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater. Des. 2015, 67, 9–19. [Google Scholar] [CrossRef]
- He, G.; Wu, Y.; Zhang, Y.; Zhu, Y.; Liu, Y.; Li, N.; Li, M.; Zheng, G.; He, B.; Yin, Q.; et al. Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties. J. Mater. Chem. B 2015, 3, 6676–6689. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tu, J.; Hu, Q.; Xiong, X.; Wu, J.; Zou, J.; Zeng, X. Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation. J. Non. Cryst. Solids 2017, 456, 125–131. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.L.; Cao, F.; Shi, Z.; Bowen, P.K. Advances in Mg corrosion and research suggestions. J. Magnes. Alloys 2013, 1, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Atrens, A.; Song, G.L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Datta, M.K.; Chou, D.T.; Hong, D.; Saha, P.; Chung, S.J.; Lee, B.; Sirinterlikci, A.; Ramanathan, M.; Roy, A.; Kumta, P.N. Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011, 176, 1637–1643. [Google Scholar] [CrossRef]
- Vaira Vignesh, R.; Padmanaban, R.; Govindaraju, M.; Suganya Priyadharshini, G. Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Mater. Res. Express 2019, 6, 085401. [Google Scholar] [CrossRef]
- Yao, X.; Tang, J.; Zhou, Y.; Atrens, A.; Dargusch, M.S.; Wiese, B.; Ebel, T.; Yan, M. Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: Corrosion behaviour, microhardness and biocompatibility. J. Magnes. Alloys 2020, in press. [Google Scholar] [CrossRef]
- Riaz, U.; Shabib, I.; Haider, W. The current trends of Mg alloys in biomedical applications—A review. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2019, 107, 1970–1996. [Google Scholar] [CrossRef]
Sample | EOCP [V] | Ecorr [V] | |βa| [mV/dec] | |βc| [mV/dec] | Rp [Ω] | jcorr [µA/cm2] | |
---|---|---|---|---|---|---|---|
ingot | Mg60Zn20Ca2.6Yb15.7Sr1.7 | −1.45 | −1.42 | 1180 | 541 | 40.72 | 3961.8 |
plates | Mg60Zn20Ca2.6Yb15.7Sr1.7 | −1.39 | −1.37 | 90 | 236 | 139.01 | 203.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarek-Żak, K.; Sypien, A.; Czeppe, T.; Bajorek, A.; Kania, A.; Babilas, R. The Influence of Rapid Solidification on Corrosion Behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 Alloy for Medical Applications. Materials 2021, 14, 5703. https://doi.org/10.3390/ma14195703
Młynarek-Żak K, Sypien A, Czeppe T, Bajorek A, Kania A, Babilas R. The Influence of Rapid Solidification on Corrosion Behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 Alloy for Medical Applications. Materials. 2021; 14(19):5703. https://doi.org/10.3390/ma14195703
Chicago/Turabian StyleMłynarek-Żak, Katarzyna, Anna Sypien, Tomasz Czeppe, Anna Bajorek, Aneta Kania, and Rafał Babilas. 2021. "The Influence of Rapid Solidification on Corrosion Behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 Alloy for Medical Applications" Materials 14, no. 19: 5703. https://doi.org/10.3390/ma14195703
APA StyleMłynarek-Żak, K., Sypien, A., Czeppe, T., Bajorek, A., Kania, A., & Babilas, R. (2021). The Influence of Rapid Solidification on Corrosion Behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 Alloy for Medical Applications. Materials, 14(19), 5703. https://doi.org/10.3390/ma14195703