Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes
Abstract
:1. Introduction
2. Methodology Section
2.1. Chemical Synthesis
2.1.1. 2-(4-(9H-Carbazol-9-yl)benzylidene)hydrazinecarbothioamide (S2)
2.1.2. General Experimental Procedure for Synthesis of Derivatives (P1–P3)
2.1.3. 2-(2-(4-(9H-Carbazol-9-yl)benzylidene)hydrazinyl)-4-(4-chlorophenyl)thiazole (P1)
2.1.4. 2-(2-(4-(9H-Carbazol-9-yl)benzylidene)hydrazinyl)-4-(2,4-dichlorophenyl)thiazole (P2)
2.1.5. 2-(2-(4-(9H-Carbazol-9-yl)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (P3)
2.2. Experimental Measurements
Materials and Instruments
2.3. Computational Details
3. Results
3.1. Experimental Section
3.2. Theoretical Sections
3.2.1. Electrochemical Properties
3.2.2. Linear and Nonlinear Optical Properties
3.2.3. Biological Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ConA | concanavalin A |
HAS | Human Serum Albumin |
GP | gas phase |
CH3Cl | Chloroform |
THF | TetraHydroFuran |
MeOH | Methanol |
DMSO | DiMethylSulfoxide |
References
- Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2012, 112, 3193–3328. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules 2011, 16, 9651–9664. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Tian, J.; Yang, J.; Wang, A.; Ji, T.; Wang, Y.; Su, Y. Bioactive carbazole alkaloids from Murraya koenigii (L.) Spreng. Fitoterapia 2013, 87, 1–6. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.E.; Rasmussen, L.; Shultz, A.R.; Shobha, H.K.; Sankarapandian, M.; Glass, T.; Long, T.E.; Pasquale, A.J. Bioactive carbazole alkaloids from Murraya koenigii (L.) Spreng. Polymer 2006, 47, 4042–4057. [Google Scholar] [CrossRef]
- Qu, J.; Morita, R.; Ashitaka, H.; Ogata, N.; Masuda, T. DNA–lipid complexes carrying carbazole and triphenylamine moieties: Synthesis, and chiroptical and photoelectronic properties. Polymer 2008, 49, 3663–3670. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Wang, X.; Kong, L.; Yang, J. Indolo[3,2-b]carbazole derivatives with high fluorescent emission both in solution and aggregated states and mechanical-induced emission enhancement characteristic. Dyes Pigment. 2021, 188, 109230. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Chen, Y. Synthesis and electrochemical and optical properties of novel poly(aryl ether)s with isolated Carbazole and p-quaterphenyl chromophores. Macromolecules 2001, 34, 2981–2986. [Google Scholar] [CrossRef]
- Morin, J.-F.; Leclerc, M.; Ades, D.; Siove, A. Syntheses of conjugated polymers derived from N-Alkyl-2,7-carbazoles. Macromol. Rapid Commun. 2005, 26, 761–778. [Google Scholar] [CrossRef]
- Rice, N.A.; Adronov, A. Supramolecular interactions of high molecular weight poly(2,7-carbazole)s with single-walled carbon nanotubes. Macromolecules 2013, 46, 3850–3860. [Google Scholar] [CrossRef]
- Dias, O.A.T.; Konar, S.; Grazian, A.; Leão, A.L.; Tjong, J.; Jaffer, S.; Sain, M. One-pot fabrication of flexible and luminescent nanofilm by in-situ radical polymerization of vinyl carbazole on nanofibrillated cellulose. Carbohydr. Polym. 2021, 262, 117934. [Google Scholar] [CrossRef]
- Thomas, K.R.J.; Lin, J.T.; Tao, Y.-T.; Ko, C.-W. Syntheses of conjugated polymers derived from N-Alkyl-2,7-carbazoles. J. Am. Chem. Soc. 2001, 123, 9404–9411. [Google Scholar] [CrossRef]
- Van Dijken, A.; Bastiaansen, J.J.A.M.; Kiggen, N.M.M.; Langeveld, B.M.W.; Rothe, C.; Monkman, A.; Bach, I.; Stössel, P.; Brunner, K. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: Polymer hosts for high-efficiency light-emitting diodes. J. Am. Chem. Soc. 2004, 126, 7718–7727. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wu, H.; Hou, X.; Xiao, F.; Shao, B. N-Aryl carbazole derivatives for non-doped red OLEDs. Synth. Met. 2006, 156, 809–814. [Google Scholar] [CrossRef]
- Tuffy, B.; Horn, S.; Blau, W.J.; Senge, M.O. Synthesis of N-methylcarbazoles from N-(2-iodoaryl)-N-methylanilines in the presence of potassium tert-butoxide and iron(II) bromid. Tetrahedron 2011, 67, 82488254. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.K.; Kang, S.O.; Ko, J. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cel. Tetrahedron 2007, 63, 1913–1922. [Google Scholar] [CrossRef]
- Won Lee, C.; Lee, J.Y. Supernovae as probes of cosmic parameters: Estimating the bias from under-dense lines of sight. Dyes Pigm. 2014, 103, 34–38. [Google Scholar] [CrossRef]
- Adachi, C.; Nagai, K.; Tamoto, N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl. Phys. Lett. 1995, 66, 267–281. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.-F.; Zhang, D.-W.; Zhang, D.; Hu, Z.-Q.; Duan, L.; Chen, C.-F. Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: A newstrategy for improving the efficiency of circularlypolarized electroluminescence. Sci. China Mater. 2021, 64, 899–908. [Google Scholar] [CrossRef]
- Ma, D. Status and prospects of aggregation-induced emission materials in organic optoelectronic devices. Top. Curr. Chem. 2021, 379, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wada, T.; Sasabe, H. Monolithic carbazole oligomer exhibiting efficient photorefractivity. Appl. Phys. Lett. 1997, 70, 2949. [Google Scholar] [CrossRef]
- Wanhua, W.; Wenting, W.; Shaomin, J.; Huimin, G.; Jianzhang, Z. Tuning the emission property of carbazole-caped cyclometalated platinum(II) complexes and its application for enhanced luminescent oxygen sensing. J. Organomet. Chem. 2011, 696, 2388–2398. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Machado, V.G.; Menezes, F.G. Quinoxaline-based chromogenic and fluorogenic chemosensors for the detection of metal cations. Chem. Pap. 2021, 75, 1775–1793. [Google Scholar] [CrossRef]
- Ohmori, Y.; Kajii, H.; Sawatani, T.; Ueta, H.; Yoshino, K. Enhancement of electroluminescence utilizing confined energy transfer for red light emission. Thin Solid Films 2001, 393, 407–411. [Google Scholar] [CrossRef]
- Ji, J.; Li, P.; Tian, Q.; Feng, W.; Wu, C. Three new carbazole derivatives with high thermal stability as host for efficient green phosphorescent organic-light emitting diodes. Dyes Pigm. 2019, 171, 107670. [Google Scholar] [CrossRef]
- Gao, L.; Schloemer, T.H.; Zhang, F.; Chen, X.; Xiao, C.; Zhu, K.; Sellinger, A. Carbazole-based hole-transport materials for high-efficiency and stable perovskite solar cells. ACS Appl. Energy Mater. 2020, 3, 4492–4498. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.L.; Li, W.H.; Bo, Z.-S. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021. [Google Scholar] [CrossRef]
- Xu, X.-P.; Li, S.-Y.; Li, Y.; Peng, Q. Recent progress in organic hole-transporting materials with4-anisylamino-based end caps for efficient perovskite solar cells. Rare Met. 2021, 40, 1669–1690. [Google Scholar] [CrossRef]
- Slodek, A.; Zych, D.; Maroń, A.; Malecki, J.G.; Golba, S.; Szafraniec-Gorol, G.; Pajak, M. Does the length matter?—Synthesis, photophysical, and theoretical study of novel quinolines based on carbazoles with different length of alkyl chain. Dyes Pigm. 2019, 160, 604–613. [Google Scholar] [CrossRef]
- Lengvinaite, S.; Grazulevicius, J.V.; Grigalevicius, S.; Gu, R.; Dehaen, W.; Jankauskas, V.; Zhang, B.; Xie, Z. Indolo[3,2-b]carbazole-based functional derivatives as materials for light emitting diodes. Dyes Pigm. 2010, 85, 183–188. [Google Scholar] [CrossRef]
- Vishnumurthy, K.A.; Girish, K.H. Synthesis, photophysical, electrochemical and computational study of indolocarbazole based donor acceptor type conjugated polymers. Chem. Pap. 2021, 75, 1969–1980. [Google Scholar] [CrossRef]
- Davidenko, A.; Davidenko, I.I.; Mokrinskaya, E.V.; Studzinskiy, S.L.; Kravchenko, V.V. Features of the photovoltaic properties of photosemiconductive film composites based on a carbazolyl-containing oligomer with azobenzene dyes as additives. J. Appl. Spectrosc. 2021, 88, 382–388. [Google Scholar] [CrossRef]
- Wang, C.; Liu, F.; Chen, Q.-M.; Xiao, C.-Y.; Wu, Y.-G.; Li, W.-W. Benzothiadiazole-based conjugated polymers for organic solar cells. Chin. J. Polym. Sci. 2021, 39, 525–536. [Google Scholar] [CrossRef]
- Thomas, M.R.N.; Lourdusamy, V.J.K.; Dhandayuthapani, A.A.; Jayakumar, V. Non-metallic organic dyes as photosensitizers for dye-sensitized solarcells: A review. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Y.; Luo, Y.; Lyu, Y. Synthesis of carbazole-based polymer derived N-enriched porous carbon for dyes sorption. Polym. Bull. 2021, 78, 3311–3325. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24, 3087–3106. [Google Scholar] [CrossRef] [PubMed]
- Venkateswararao, A.; Thomas, K.R.J. Solar Cell Nanotechnology; Tiwari, A., Boukherroub, R., Sharon, M., Eds.; Wiley-Scrivener: Beverly, MA, USA, 2014; Chapter 2; pp. 41–96. [Google Scholar]
- Kamala, L.; Kumar, B.S.; Lakshmi, P.V.A. Synthesis and docking studies of novel carbazole-thiazolidinedione hybrid derivatives as antibacterial agents. Russ. J. Bioorganic Chem. 2021, 47, 166–173. [Google Scholar] [CrossRef]
- Liu, J.-R.; Miao, H.; Deng, D.-Q.; Vaziri, N.D.; Li, P.; Zhao, Y.-Y. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell Mol. Life Sci. 2021, 78, 909–922. [Google Scholar] [CrossRef]
- Niu, L.-L.; Wu, Y.-R.; Liu, H.-P.; Wang, Q.; Li, M.-Y.; Jia, Q. Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. J. Food Meas. Charact. 2021, 15, 2842–2853. [Google Scholar] [CrossRef]
- Ito, C.; Itoigawa, M.; Aizawa, K.; Yoshida, K.; Ruangrungsi, N.; Furukawa, H. γ-lactone carbazoles from Clausena anisata. J. Nat. Prod. 2009, 72, 1202–1204. [Google Scholar] [CrossRef]
- Adebajo, A.C.; Iwalewa, E.O.; Obuotor, E.M.; Ibikunle, G.F.; Omisore, N.O.; Adewunmi, C.O.; Obaparusi, O.O.; Klaes, M.; Adetogun, G.E.; Schmidt, T.J.; et al. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: Anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. J. Ethnopharmacol. 2009, 122, 10–19. [Google Scholar] [CrossRef]
- Songsiang, U.; Thongthoom, T.; Boonyarat, C.; Yenjai, C. Claurailas A–D, cytotoxic carbazole alkaloids from the roots of Clausena harmandiana. J. Nat. Prod. 2011, 74, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Sakunpak, A.; Saingam, W.; Jaisamut, S.; Issuriya, A.; Ruangrungsi, N. Pyranocarbazole alkaloids, isolated from Clausena cambodiana leaves, as a pancreatic cholesterol esterase inhibitor, and their HPLC–DAD quantitative determination method. Chem. Pap. 2021, 75, 2451–2458. [Google Scholar] [CrossRef]
- Rajakumar, P.; Sekar, K.; Shanmugaiah, V.; Mathivanan, N. Synthesis of novel carbazole based macrocyclic amides as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, 3040–3045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-F.; Gan, L.-L.; Zhou, C.-H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Med. Chem. Lett. 2010, 20, 1881–1884. [Google Scholar] [CrossRef]
- Saravanabhavan, M.; Sathya, K.; Puranik, V.G.; Sekar, M. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Łączkowski, K.Z.; Konklewska, N.; Biernasiuk, A.; Malm, A.; Sałat, K.; Furgała, A.; Dzitko, K.; Bekier, A.; Baranowska-Łączkowska, A.; Paneth, A. Thiazoles with cyclopropyl fragment as antifungal, anticonvulsant, and anti-Toxoplasma gondii agents: Synthesis, toxicity evaluation, and molecular docking study. Med. Chem. Res. 2018, 27, 2125–2140. [Google Scholar] [CrossRef] [Green Version]
- Lino, C.I.; de Souza, I.G.; Borelli, B.A.; Matos, T.T.S.; Teixeira, I.N.S.; Ramos, J.P.; de Souza Fagundes, E.M.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; et al. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem. 2018, 151, 248–260. [Google Scholar] [CrossRef]
- Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem. 2019, 184, 111765. [Google Scholar] [CrossRef] [PubMed]
- Secci, D.; Bizzarri, B.; Bolasco, A.; Carradori, S.; D’Ascenzio, M.; Rivanera, D.; Mari, E.; Polletta, L.; Zicari, A. Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl)thiazol-2-yl)hydrazine derivatives. Eur. J. Med. Chem. 2012, 53, 246–253. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett. 2012, 22, 5839–5844. [Google Scholar] [CrossRef]
- Zall, A.; Kieser, D.; Höttecke, N.; Naumann, E.C.; Thomaszewski, B.; Schneider, K.; Steinbacher, D.T.; Schubenel, R.; Masur, S.; Baumann, K.; et al. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold. Bioorg. Med. Chem. 2011, 19, 4903–4909. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wong, Y.; Ng, O.T.W.; Bai, L.-P.; Kwong, D.W.J.; Ke, Y.; Jiang, Z.-H.; Li, H.-W.; Yung, K.K.L.; Wong, M.S. Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angew. Chem. Int. Ed. 2012, 51, 1804–1810. [Google Scholar] [CrossRef]
- Saengkhae, C.; Salerno, M.; Ades, D.; Siove, A.; Le Moyec, L.; Migonney, V.; Garnier-Suillerot, A. Ability of carbazole salts, inhibitors of Alzheimer β-amyloid fibril formation, to cross cellular membranes. Eur. J. Pharmacol. 2007, 559, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Thiratmatrakul, S.; Yenjai, C.; Waiwut, P.; Vajragupta, O.; Reubroycharoen, P.; Tohda, M.; Boonyarat, C. Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014, 75, 21–30. [Google Scholar] [CrossRef]
- Huang, F.-C.; Chang, C.-C.; Wang, J.-M.; Chang, T.-C.; Lin, J.-J. Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity. J. Pharmacol. 2012, 167, 393–406. [Google Scholar] [CrossRef]
- Chu, J.F.; Wang, Z.F.; Tseng, T.Y.; Chang, T.C. A novel method for screening G-quadruplex stabilizers to human telomeres. J. Chin. Chem. Soc. 2011, 58, 296–300. [Google Scholar] [CrossRef]
- Tseng, T.-Y.; Chien, C.-H.; Chu, J.-F.; Huang, W.-C.; Lin, M.-Y.; Chang, C.-C.; Chang, T.-C. Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy. J. Biomed. Opt. 2013, 18, 101309. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.-S.; Chang, C.-C.; Chang, T.-C.; Yang, T.-L.; Young, T.-H.; Lou, P.-J. Photo-induced antitumor effect of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide. BioMed Res. Int. 2012, 2013, 930281. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-Y.; Wang, Z.-F.; Chien, C.-H.; Chang, T.-C. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res. 2013, 41, 10605–10618. [Google Scholar] [CrossRef]
- Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; et al. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem. 2019, 175, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.; Edrees, M.; Altalbawy, F. Synthesis and characterization of some new bis-pyrazolyl-thiazoles incorporating the thiophene moiety as potent anti-tumor agents. Int. J. Mol. Sci. 2016, 17, 1499. [Google Scholar] [CrossRef]
- Łączkowski, K.Z.; Anusiak, J.; Świtalska, M.; Dzitko, K.; Cytarska, J.; Baranowska-Łączkowska, A.; Plech, T.; Paneth, A.; Wietrzyk, J.; Białczyk, J. Synthesis, molecular docking, ctDNA interaction, DFT calculation and evaluation of antiproliferative and anti-Toxoplasma gondii activities of 2,4-diaminotriazine-thiazole derivatives. J. Med. Chem. Res. 2018, 27, 1131–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; et al. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem. 2013, 21, 412–424. [Google Scholar] [CrossRef]
- Olmsted, J., III. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem. 1979, 83, 2581–2684. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, G.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Adamo, C.; Scuseria, G.E.; Barone, V. Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model. J. Chem. Phys. 1999, 111, 2889–2899. [Google Scholar] [CrossRef]
- Guido, C.; Caprasecca, S. How to perform corrected Linear Response calculations in G09; University of Pisa: Pisa, Italy.
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868, Errata in 1997, 78, 1396, doi:10.1103/PhysRevLett.78.1396. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.E. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 2004, 120, 7274. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential”. J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef] [Green Version]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Scuseria, G.E. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 2006, 125, 234109. [Google Scholar] [CrossRef] [PubMed]
- Vydrov, O.A.; Scuseria, G.E.; Perdew, J.P. Tests of functionals for systems with fractional electron numer. J. Chem. Phys. 2007, 126, 1541009. [Google Scholar] [CrossRef] [PubMed]
- Minezawa, N. State-specific solvation effect on the intramolecular charge transfer reaction in solution: A linear-response free energy TDDFT method. Chem. Phys. Lett. 2014, 608, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Ming Tong, G.S.; Chan, K.T.; Chang, X.; Che, C.-M. Theoretical studies on the photophysical properties of luminescent pincer gold(iii) arylacetylide complexes: The role of π-conjugation at the C-deprotonated [C^N^C] ligand. Chem. Sci. 2015, 6, 3026–3037. [Google Scholar] [CrossRef] [Green Version]
- Slipchenko, L.V. Solvation of the excited states of chromophores in polarizable environment: Orbital relaxation versus polarization. J. Phys. Chem. A 2010, 114, 8824–8830. [Google Scholar] [CrossRef]
- Sneskov, K.; Schwabe, T.; Christiansen, O.; Kongsted, J. Scrutinizing the effects of polarization in QM/MM excited state calculations. Phys. Chem. Chem. Phys. 2011, 13, 18551–18560. [Google Scholar] [CrossRef]
- Caricato, M. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method. J. Chem. Phys. 2013, 139, 044116. [Google Scholar] [CrossRef] [Green Version]
- Le Bahers, T.; Adamo, C.; Ciofini, I. A qualitative index of spatial extent in charge-transfer excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506. [Google Scholar] [CrossRef]
- Cancés, M.T.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Muniappan, P.; Meenakshi, R.; Rajavel, G. PCM/TD-DFT analysis of 1-bromo-2,3-dichlorobenzene—A combined study of experimental (FT-IR and FT-Raman) and theoretical calculations. Spectrochim. Acta Part A 2013, 105, 497–508. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Academic: London, UK, 2003; p. 521. [Google Scholar]
- Craig, D.P.; Thirunamachandran, T. Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules. J. Chem. Phys. 2007, 127, 084504. [Google Scholar] [CrossRef]
- Zaleśny, R.; Bartkowiak, W.; Styrcz, S.; Leszczynski, J. Solvent effects on conformationally induced enhancement of the two-photon absorption cross section of a pyridinium-N-phenolate betaine dye. A quantum chemical study. J. Phys. Chem. A 2002, 106, 4032–4037. [Google Scholar] [CrossRef]
- Olsen, J.; Jorgensen, P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 1985, 82, 3235. [Google Scholar] [CrossRef] [Green Version]
- Sałek, P.; Vahtras, O.; Guo, J.D.; Luo, Y.; Helgaker, T.; Ågren, H. Calculations of two-photon absorption cross sections by means of density-functional theory. Chem. Phys. Lett. 2003, 374, 446–452. [Google Scholar] [CrossRef]
- DALTON. A Molecular Electronic Structure Program. Release Dalton. 2011. Available online: http://daltonprogram.org/61 (accessed on 10 May 2021).
- LSDALTON. A Linear Scaling Molecular Electronic Structure Program. Release Dalton. 2011. Available online: http://daltonprogram.org (accessed on 10 May 2021).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with AutoDock: Theory and practice. Expert Opin. Drug Discov. 2010, 5, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Panjikar, C.S.; Tucker, P.A.; Weiss, M.S. On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 1263–1272. [Google Scholar] [CrossRef]
- Sugio, S.; Mochizuki, S.; Noda, M.; Kashima, A. Crystal structure of human serum albuminum. Protein Eng. Des. Sel. 1999, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Potemkin, V.; Grishina, M. Principles for 3D/4D QSAR classification of drugs. Drug Discov. Today 2008, 13, 952–959. [Google Scholar] [CrossRef]
- Potemkin, V.; Grishina, M. A new paradigm for pattern recognition of drugs. J. Comput. Aided Mol. Des. 2008, 22, 489–505. [Google Scholar] [CrossRef]
- Potemkin, V.; Pogrebnoy, A.A.; Grishina, M.A. Technique for energy decomposition in the study of “receptor-ligand” complexes. J. Chem. Inf. Model. 2009, 49, 1389–1406. [Google Scholar] [CrossRef] [PubMed]
- Suppan, P. Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem. 1990, 50, 293–330. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- Xiao, W.; Yu, J.; Xin, J.; Jin, R. Theoretical study on the effect of spacer groups on the nonlinearoptical properties of polyvinyl carbazole molecular fragments. Struct. Chem. 2020, 31, 1471–1479. [Google Scholar] [CrossRef]
- Krawczyk, P.; Bratkowska, M.; Wybranowski, T.; Hołyńska-Iwan, I.; Cysewski, P.; Jędrzejewska, B. Experimental and theoretical insight into spectroscopic properties and bioactivity of 4-(4-formylbenzylidene)-2-phenyloxazol-5(4H)-one dye for future applications in biochemistry. J. Mol. Liq. 2020, 314, 113632. [Google Scholar] [CrossRef]
- Krawczyk, P.; Wybranowski, T.; Kaźmierski, Ł.; Hołyńska-Iwan, I.; Bartkowska, M.; Cysewski, P.; Jędrzejewska, B. 2’(1H-phenanthro[9,10-d]imidazol-2-yl-4-carboxyclic acid N-hydroxysuccimimide ester: A new phenathroimidzole derivative as a fluorescent probe for medical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117757. [Google Scholar] [CrossRef]
- Krawczyk, P.; Jędrzejewska, B.; Cysewski, P.; Janek, T. Synthesis, photophysical and biological properties of a new oxazolone fluorescent probe for bioimaging: An experimental and theoretical study. Org. Biomol. Chem. 2017, 15, 8952–8966. [Google Scholar] [CrossRef]
- Krawczyk, P.; Jędrzejewska, B.; Pietrzak, M.; Janek, T. Synthesis, photophysical properties and systematic evaluations of new phenanthroimidazole fluorescent probe for boimaging: Experimental and theoretical study. J. Photochem. Photobiol. B-Biol. 2017, 166, 74–85. [Google Scholar] [CrossRef]
- Szukalski, A.; Jędrzejewska, B.; Krawczyk, P.; Bajorek, A. An optical modulator on the pyrazolone-based bi-component system. Dyes Pigm. 2020, 172, 107805. [Google Scholar] [CrossRef]
- Jędrzejewska, B.; Krawczyk, P.; Józefowicz, M. Experimental and theoretical studies of the influence of solvent polarity on the spectral properties of two push-pull oxazol-5-(4H)-one compounds. Spectrochim. Acta A Mol Biomol. Spectrosc. 2017, 171, 258–267. [Google Scholar] [CrossRef]
- Krawczyk, P.; Pietrzak, M.; Janek, T.; Jędrzejewska, B.; Cysewski, P. Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: A theoretical and experimental study. J. Mol. Model. 2016, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.; Jędrzejewska, B.; Pietrzak, M.; Janek, T. Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study. J. Photochem. Photobiol. B-Biol. 2016, 164, 112–122. [Google Scholar] [CrossRef]
- Lanke, S.K.; Sekar, N. Aggregation induced emissive carbazole-based push pull NLOphores: Synthesis, photophysical properties and DFT studies. Dyes Pigm. 2016, 124, 82–92. [Google Scholar] [CrossRef]
- Adhikari, R.M.; Neckers, D.C. Unusual photophysical properties of substituted carbazoles. J. Phys. Chem. A 2009, 113, 417–422. [Google Scholar] [CrossRef]
- Gao, S.; Hao, L.; Li, J.; Lin, P.; Li, D.; Shuang, S.; Dong, C. Photophysical processes of an intramolecular charge transfer fluorescent dye with carbazole units. Luminescence 2013, 28, 412–418. [Google Scholar] [CrossRef]
- Bingul, M.; Şenkuytu, E.; Boğa, M.; Nur Uslu, T.; Kandemir, H.; Sengul, I.F. Synthesis, photophysical and antioxidant properties of pyrrolo[3,2-c]carbazole and dipyrrolo[3,2-c:2′,3′-g]carbazole compounds. Res. Chem. Intermed. 2019, 45, 997–1000. [Google Scholar] [CrossRef]
- Adhikari, R.M.; Mondal, R.; Shah, B.K.; Neckers, D.C. Synthesis and photophysical properties of carbazole-based blue light-emitting dendrimers. JOC 2007, 72, 4727–4732. [Google Scholar] [CrossRef] [PubMed]
- Svetlichnyia, V.M.; Aleksandrova, E.L.; Myagkova, L.A.; Matyushina, N.V.; Nekrasova, T.N.; Smyslov, R.Y.; Tameev, A.R.; Stepanenko, S.N.; Vannikov, A.V.; Kudryavtsev, V.V. Photophysical and electrical properties of polyphenylquinolines containing carbazole or indolo[3,2-b]carbazole fragments as new optoelectronic materials. Semiconductors 2011, 45, 1339–1345. [Google Scholar] [CrossRef]
- Brinkley, M. A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents. Bioconjugate Chem. 1992, 3, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Neidle, S. Design Principles for Quadruplex-Binding Small Molecules in Therapeutic Applications of Quadruplex Nucleic Acids; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
Solvent | ε | ∆ν | φFl | τ1 α1 | τ2 α2 | χ2 | τav | kr | knr | knr/kr | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | ||||||||||||
DMSO | 365 | 2.50 | 489.4 | 6964 | 0.18 | 0.086 95.54 | 1.735 4.46 | 1.353 | 0.161 | 1.11 | 6.20 | 559.2 |
THF | 361.5 | 2.55 | 456.8 | 5771 | 0.14 | 0.667 67.49 | 3.962 32.51 | 1.465 | 1.740 | 0.805 | 0.575 | 713.3 |
CHCl3 | 366 | 2.41 | 454.2 | 5306 | 10.98 | - | 1.261 100 | 1.579 | 1.261 | 8.71 | 0.71 | 8.1 |
Toluene | 365.5 | - | 424.6 | 3808 | 2.27 | 0.226 99.22 | 0.777 0.78 | 1.364 | 0.230 | 9.86 | 4.24 | 43.0 |
MeOH | 356.5 | 2.22 | 466.4 | 6610 | 0.13 | 0.11 79.27 | 1.188 20.73 | 1.403 | 0.333 | 0.375 | 3.00 | 798.7 |
- | P2 | |||||||||||
DMSO | 362.5 | 2.87 | 478.4 | 6683 | 0.19 | 0.074 95.94 | 1.56 4.06 | 1.481 | 0.134 | 1.42 | 7.43 | 524.8 |
THF | 357.5 | 3.17 | 463.6 | 6402 | 0.12 | 0.103 71.41 | 2.864 28.59 | 1.4 | 0.892 | 0.13 | 1.12 | 854.9 |
CHCl3 | 359 | 2.90 | 448.6 | 5564 | 5.77 | - | 1.178 100 | 1.753 | 1.178 | 4.90 | 0.80 | 16.3 |
Toluene | 357 | 2.90 | 428 | 4647 | 0.18 | 0.252 95.65 | 1.003 4.35 | 1.368 | 0.285 | 0.064 | 3.51 | 547.0 |
MeOH | 353 | 3.53 | 463.6 | 6758 | 0.09 | 0.088 90.23 | 1.072 9.77 | 1.265 | 0.184 | 0.051 | 5.43 | 1061.8 |
- | P3 | |||||||||||
DMSO | 364 | 2.64 | 479.6 | 6622 | 0.19 | 0.074 96.23 | 1.633 3.77 | 1.581 | 0.132 | 1.47 | 7.55 | 513.8 |
THF | 360.5 | 3.41 | 466.6 | 6308 | 0.17 | 0.131 41.66 | 3.917 58.34 | 1.327 | 2.340 | 0.073 | 0.43 | 582.7 |
CHCl3 | 358 | 3.07 | 449.4 | 5681 | 0.41 | 0.951 60.72 | 2.222 39.28 | 1.468 | 1.450 | 0.29 | 0.69 | 240.3 |
Toluene | 360 | 3.02 | 434.6 | 4768 | 0.07 | 0.078 92.84 | 1.605 7.16 | 1.255 | 0.187 | 0.37 | 5.33 | 1432.6 |
MeOH | 357 | 3.25 | 465 | 6506 | 0.15 | 0.097 84.19 | 1.051 15.81 | 1.418 | 0.248 | 0.598 | 4.03 | 673.5 |
Gas Phase | DMSO | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | |
(vert) 1 | 365.58 | 364.17 | 369.84 | 365.17 | 361.39 | 364.86 |
(cLR) 1 | - | - | - | 363.79 | 361.96 | 364.50 |
(vert) 1 | 413.68 | 421.57 | 429.46 | 490.12 | 479.26 | 480.51 |
(cLR) 1 | - | - | - | 492.16 | 480.46 | 481.60 |
2 | 985.99 | 1493.83 | 1695.00 | 948.06 | 1435.18 | 1639.17 |
3 | 4.37 | 6.72 | 7.51 | 4.18 | 6.43 | 7.23 |
μGS 4 | 3.60 | 4.17 | 4.85 | 5.17 | 5.90 | 7.12 |
μCT 4 | 10.01 | 10.69 | 11.47 | 9.47 | 6.88 | 8.93 |
2 | 441.55 | 449.99 | 453.48 | 600.15 | 614.43 | 620.46 |
2 | 289.85 | 295.23 | 312.61 | 304.12 | 322.71 | 371.64 |
β vec 2 | 722.09 | 953.31 | 1036.64 | 103.91 | 166.26 | 218.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk, P.; Jędrzejewska, B.; Seklecka, K.; Cytarska, J.; Łączkowski, K.Z. Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. Materials 2021, 14, 3091. https://doi.org/10.3390/ma14113091
Krawczyk P, Jędrzejewska B, Seklecka K, Cytarska J, Łączkowski KZ. Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. Materials. 2021; 14(11):3091. https://doi.org/10.3390/ma14113091
Chicago/Turabian StyleKrawczyk, Przemysław, Beata Jędrzejewska, Klaudia Seklecka, Joanna Cytarska, and Krzysztof Z. Łączkowski. 2021. "Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes" Materials 14, no. 11: 3091. https://doi.org/10.3390/ma14113091
APA StyleKrawczyk, P., Jędrzejewska, B., Seklecka, K., Cytarska, J., & Łączkowski, K. Z. (2021). Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. Materials, 14(11), 3091. https://doi.org/10.3390/ma14113091