Thermal Properties and the Prospects of Thermal Energy Storage of Mg–25%Cu–15%Zn Eutectic Alloy as Phase Change Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Thermal Cycling Test
2.3. Analysis Methods
3. Results
3.1. Structural Analysis
3.2. Phase Change Temperatures and Enthalpies
3.3. Thermal Expansion
3.4. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medrano, M.; Gil, A. State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies. Renew. Sustain. Energy Rev. 2010, 14, 56–72. [Google Scholar] [CrossRef]
- Maruoka, N.; Akiyama, T. Exergy Recovery from Steelmaking Off-Gas by Latent Heat Storage for Methanol Production. Energy 2006, 31, 1632–1642. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M. A Review on Phase Change Energy Storage: Materials and Applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Kim, K.; Choi, K. Feasibility Study on a Novel Cooling Technique Using a Phase Change Material in an Automotive Engine. Energy 2010, 35, 478–484. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM, 1st ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Sharma, A.; Tyagi, V.V. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sust. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Iten, M.; Liu, S. Experimental Study on the Performance of RT 25 to be Used as Ambient Energy Storage. Energy Procedia 2015, 70, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Farah, S.; Liu, M. Numerical investigation of phase change material thermal storage for space cooling. Appl. Energy 2019, 239, 526–535. [Google Scholar] [CrossRef]
- Hoshi, A.; Mills, D.R. Screening of High Melting Point Phase Change Materials (PCM) in Solar Thermal Concentrating Technology Based on CLFR. Sol. Energy 2005, 79, 332–339. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W. Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems. Renew. Sust. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Kenisarin, M.M. High-Temperature Phase Change Materials for Thermal Energy Storage. Renew. Sust. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Khare, S.; Dell Amico, M. Selection of Materials for High Temperature Latent Heat Energy Storage. Sol. Energy Mat. Sol. C. 2012, 107, 20–27. [Google Scholar] [CrossRef]
- Sugo, H.; Kisi, E. Miscibility Gap Alloys with Inverse Microstructures and High Thermal Conductivity for High Energy Density Thermal Storage Applications. Appl. Therm. Eng. 2013, 51, 1345–1350. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Experimental Research on A Kind of Novel High Temperature Phase Change Storage Heater. Energy Convers. Manag. 2006, 47, 2211–2222. [Google Scholar] [CrossRef]
- He, Q.; Zhang, W. A Study on Latent Heat Storage Exchangers with the High-Temperature Phase-Change Material. Int. J. Energy Res. 2001, 25, 331–341. [Google Scholar] [CrossRef]
- KotzÊ, J.P.; von BackstrÃļm, T.W. High Temperature Thermal Energy Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer Fluids. J. Sol. Energy Eng. 2013, 135, 35001. [Google Scholar]
- Li, X.; Wang, H. Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage. In Proceedings of the ASME 2013 7th International Conference on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Minneapolis, MN, USA, 14 July 2013. [Google Scholar]
- Sun, J.Q.; Zhang, R.Y. Thermal Reliability Test of Al–34%Mg–6%Zn Alloy as Latent Heat Storage Material and Corrosion of Metal with Respect to Thermal Cycling. Energy Convers. Manag. 2007, 48, 619–624. [Google Scholar] [CrossRef]
- Deqing, W.; Ziyuan, S. A Liquid Aluminum CorrosionResistance Surface on Steel Substrate. Appl. Surf. Sci. 2003, 214, 304–311. [Google Scholar] [CrossRef]
- Villars, P.; Prince, A. Handbook of Ternary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, Geauga, OH, USA, 1997. [Google Scholar]
- Song, G.A.; Han, J.H. Formation of Bimodal Eutectic Structure in Ti63.5Fe30.5Sn6 and Mg72Cu5Zn23 Alloys. J. Alloys Compd. 2011, 509, S353–S356. [Google Scholar] [CrossRef]
- Zhang, C.M.; Hui, X. Formation of High Strength Mg–Cu–Zn–Y Alloys. Mater. Sci. Eng. A. 2008, 491, 470–475. [Google Scholar] [CrossRef]
- Yamasaki, M.; Kawamura, Y. Thermal Diffusivity and Thermal Conductivity of Mg–Zn–Rare Earth Element Alloys with Long-Period Stacking Ordered Phase. Scripta. Mater. 2009, 60, 264–267. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, P.; Rodríguez-Aseguinolaza, J. Thermophysical Characterization of Mg–51%Zn Eutectic Metal Alloy: A Phase Change Material for Thermal Energy Storage in Direct Steam Generation Applications. Energy 2014, 72, 414–420. [Google Scholar] [CrossRef]
- Rodríguez-Aseguinolaza, J.; Blanco-Rodríguez, P. Thermodynamic Study of the Eutectic Mg49–Zn51 Alloy Used for Thermal Energy Storage. J. Therm. Anal. Calorim. 2014, 117, 93–99. [Google Scholar] [CrossRef]
- Buha, J.; Ohkubo, T. Natural Aging in Mg-Zn(-Cu) Alloys. Metall. Mater. Trans. A. 2008, 39, 2259. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Physics and Chemistry, 82nd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Song, G.A.; Lee, J.S. Mechanical Properties of Large-Scale Mg–Cu–Zn Ultrafine Eutectic Composites. J. Alloys Compd. 2009, 481, 135–139. [Google Scholar] [CrossRef]
- Farkas, D.; Birchenall, C.E. New Eutectic Alloys and Their Heats of Transformation. Metall. Trans. A. 1985, 16, 323–328. [Google Scholar] [CrossRef]
- Micco, G.D.; Pasquevich, D.M. Interactions during the chlorination of a copper–zinc alloy. Thermochim. Acta 2008, 470, 83–90. [Google Scholar] [CrossRef]
- Rudajevova, A. Thermal Diffusivity and Thermal Conductivity of Ni53.6Mn27.1Ga19.3 Shape Memory Alloy. Int. J. Therm. Sci. 2008, 47, 1243–1248. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y. Thermal Conductivity of As-Cast and As-Extruded Binary Mg–Al Alloys. J. Alloys Compd. 2014, 608, 19–24. [Google Scholar] [CrossRef]
Phase | A | B | C | D |
---|---|---|---|---|
Mg | 98.56 | 71.11 | 98.21 | 71.35 |
Cu | 0.55 | 17.69 | 0.48 | 19.17 |
Zn | 0.89 | 11.20 | 1.31 | 9.48 |
Closest phase | α-Mg | α-Mg + Mg7(Zn,Cu)3 + MgCuZn | α-Mg | α-Mg + Mg7(Zn,Cu)3 + MgCuZn |
Number of Cycles | Melting Temperature /(°C) | Freezing Temperature /(°C) | Overcooling Degree /(°C) | Melting Enthalpy /(J/g) | Freezing Enthalpy /(J/g) | ||
---|---|---|---|---|---|---|---|
Onset | End | Onset | End | ΔT | ΔHm | ΔHf | |
0 | 452.6 | 471.8 | 448.2 | 437.7 | 4.4 | 177.5 | 171.4 |
500 | 451.3 | 462.9 | 446.2 | 433.6 | 5.1 | 165.7 | 158.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, L.; Cheng, X.; Zhu, J.; Li, Y.; Zhou, W. Thermal Properties and the Prospects of Thermal Energy Storage of Mg–25%Cu–15%Zn Eutectic Alloy as Phase Change Material. Materials 2021, 14, 3296. https://doi.org/10.3390/ma14123296
Sun Z, Li L, Cheng X, Zhu J, Li Y, Zhou W. Thermal Properties and the Prospects of Thermal Energy Storage of Mg–25%Cu–15%Zn Eutectic Alloy as Phase Change Material. Materials. 2021; 14(12):3296. https://doi.org/10.3390/ma14123296
Chicago/Turabian StyleSun, Zheng, Linfeng Li, Xiaomin Cheng, Jiaoqun Zhu, Yuanyuan Li, and Weibing Zhou. 2021. "Thermal Properties and the Prospects of Thermal Energy Storage of Mg–25%Cu–15%Zn Eutectic Alloy as Phase Change Material" Materials 14, no. 12: 3296. https://doi.org/10.3390/ma14123296
APA StyleSun, Z., Li, L., Cheng, X., Zhu, J., Li, Y., & Zhou, W. (2021). Thermal Properties and the Prospects of Thermal Energy Storage of Mg–25%Cu–15%Zn Eutectic Alloy as Phase Change Material. Materials, 14(12), 3296. https://doi.org/10.3390/ma14123296