Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursor Thin Films Deposition
2.2. Precursor Films Conversion into Perovskites
2.3. Characterisation Methods
3. Results and Discussions
3.1. Mixed SnCl2-PbI2 Precursor Films
3.1.1. Surface Morphology
3.1.2. Rutherford Backscattering Spectrometry (RBS)
3.1.3. Crystal Structure and Phase Composition
3.1.4. Optical Properties
3.2. Perovskite Structure-Property Relationships
3.2.1. Surface Morphology
3.2.2. Crystal Structure and Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wenk, H.; Bulakh, A. Minerals: Their constitution and origin. Can. Min. J. 2004, 125, 7. [Google Scholar]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, B.; Rosen, N.; Clauser, J.F.; Steinberg, A.M.; Chiao, R.Y.; Vaziri, A.; Weihs, G.; Zeilinger, A.; Bennink, R.S.; Bentley, S.J.; et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–648. [Google Scholar]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S. Il Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Chang, Y.H.; Wu, M.C. High-performance perovskite solar cells based on low-temperature processed electron extraction layer. Front. Mater. 2019, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Frolova, L.A.; Davlethanov, A.I.; Dremova, N.N.; Zhidkov, I.; Akbulatov, A.F.; Kurmaev, E.Z.; Aldoshin, S.M.; Stevenson, K.J.; Troshin, P.A. Efficient and stable MAPbI3-based perovskite solar cells using polyvinylcarbazole passivation. J. Phys. Chem. Lett. 2020, 11, 6772–6778. [Google Scholar] [CrossRef] [PubMed]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Im, J.; Stoumpos, C.C.; Jin, H.; Freeman, A.J.; Kanatzidis, M.G. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1−xPbxI3. J. Phys. Chem. Lett. 2015, 6, 3503–3509. [Google Scholar] [CrossRef]
- Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V.S.; Nie, W.; Pearson, A.J.; Puttisong, Y.; Gödel, K.C.; Beere, H.E.; et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Kazim, S.; Nazeeruddin, M.K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. Int. Ed. 2014, 53, 2812–2824. [Google Scholar] [CrossRef]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Serrano-lujan, L.; Espinosa, N.; Larsen-olsen, T.T.; Abad, J.; Urbina, A.; Krebs, F.C. Tin- and lead-based perovskite solar cells under scrutiny: An environmental perspective. Adv. Energy Mater. 2015, 15, 1–5. [Google Scholar] [CrossRef]
- Stranks, S.D.; Nayak, P.K.; Zhang, W.; Stergiopoulos, T.; Snaith, H.J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 2015, 54, 3240–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; He, M.; Peng, J.; Sun, Y.; Liang, Z. Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Mon. Chem. 2017, 148, 795–826. [Google Scholar] [CrossRef] [Green Version]
- Stroyuk, O. Lead-free hybrid perovskites for photovoltaics. Beilstein J. Nanotechnol. 2018, 9, 2209–2235. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Fan, J.; Mai, Y. A brief review on the lead element substitution in perovskite solar cells. J. Energy Chem. 2018, 27, 1054–1066. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-based solar cells: Materials, methods, and future perspectives. J. Nanomater. 2018, 2018. [Google Scholar] [CrossRef]
- Zhang, Q.; Hao, F.; Li, J.; Zhou, Y.; Wei, Y.; Lin, H. Perovskite solar cells: Must lead be replaced–and can it be done? Sci. Technol. Adv. Mater. 2018, 19, 425–442. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Ke, W.; Kanatzidis, M.G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 2019, 1–4. [Google Scholar] [CrossRef]
- Ji, D.; Wang, S.; Zhang, H.; Wang, H.; Zhang, B.; Zhang, C.; Li, X. Why cannot all divalent cations completely substitute the Pb cations of CH3NH3PbI3 perovskite? Phys. Lett. 2019, 383, 2130–2138. [Google Scholar] [CrossRef]
- Wang, K.; Subhani, W.S.; Wang, Y.; Zuo, X.; Wang, H.; Duan, L.; Liu, S. Metal cations in efficient perovskite solar cells: Progress and perspective. Adv. Mater. 2019, 31, 1–17. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Li, H.; Zhang, C.; Fan, J.; Mai, Y. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale 2017, 9, 13967–13975. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, T.; Prasanna, R.; Gold-Parker, A.; Toney, M.F.; McGehee, M.D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2017, 2, 2159–2165. [Google Scholar] [CrossRef]
- Gu, S.; Lin, R.; Han, Q.; Gao, Y.; Tan, H.; Zhu, J. Tin and mixed lead–tin halide perovskite solar cells: Progress and their application in tandem solar cells. Adv. Mater. 2020, 32, 1–16. [Google Scholar] [CrossRef]
- Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.S.; Ma, T.; et al. CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Stoumpos, C.C.; Chang, R.P.H.; Kanatzidis, M.G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Rajagopal, A.; Chueh, C.; Jo, S.B.; Liu, B.; Zhao, T.; Jen, A.K. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv. Mater. 2016, 28, 8990–8997. [Google Scholar] [CrossRef]
- Calvo, M.E.; Hagfeldt, A. Optical analysis of CH3NH3SnxPb1-xI3 absorbers: A roadmap for perovskite-on-perovskite tandem solar cells. J. Mater. Chem. A 2016. [Google Scholar] [CrossRef] [Green Version]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.W.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yang, Z.; Chueh, C.C.; Rajagopal, A.; Williams, S.T.; Sun, Y.; Jen, A.K.Y. Improved efficiency and stability of Pb-Sn binary perovskite solar cells by Cs substitution. J. Mater. Chem. A 2016, 4, 17939–17945. [Google Scholar] [CrossRef]
- Zhu, L.; Yuh, B.; Schoen, S.; Li, X.; Aldighaithir, M.; Richardson, B.J.; Alamer, A.; Yu, Q. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale 2016, 8, 7621–7630. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, A.; Yang, Z.; Jo, S.B.; Braly, I.L.; Liang, P.W.; Hillhouse, H.W.; Jen, A.K.Y. Highly Efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 2017, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.K.; Xu, Z.F.; Zhang, D.Y.; Hu, S.X.; Lau, W.M.; Liu, L.M. Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.L.; Xiao, J.; Mao, J.; Zhang, H.; Zhao, Y.; Choy, W.C.H. Controllable crystallization of CH3NH3Sn0.25Pb0.75I3 perovskites for hysteresis-free solar cells with efficiency reaching 15.2%. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, N.; Zhang, L.; Ju, M.G.; Zeng, X.C.; Sun, X.W.; Zhou, Y.; Padture, N.P. Homogenous alloys of formamidinium lead triiodide and cesium tin triiodide for efficient ideal-bandgap perovskite solar cells. Angew. Chem. Int. Ed. 2017, 56, 12658–12662. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Hao, Y.; Sun, Q.; Li, Z.; Wang, H.; Cui, Y.; Zhu, F. High efficiency planar Sn-Pb binary perovskite solar cells: Controlled growth of large grains via a one-step solution fabrication process. J. Mater. Chem. C 2017, 5, 2360–2367. [Google Scholar] [CrossRef]
- Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z. 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv. Energy Mater. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Lyu, M.; Zhang, M.; Cooling, N.A.; Jiao, Y.; Wang, Q.; Yun, J.H.; Vaughan, B.; Triani, G.; Evans, P.; Zhou, X.; et al. Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Sci. Bull. 2016, 61, 1558–1562. [Google Scholar] [CrossRef] [Green Version]
- Zuo, F.; Williams, S.T.; Liang, P.; Chueh, C.; Liao, C.; Jen, A.K. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 2014, 26, 6454–6460. [Google Scholar] [CrossRef]
- Lin, G.; Lin, Y.; Huang, H.; Cui, R.; Guo, X.; Liu, B.; Dong, J.; Guo, X.; Sun, B. Novel exciton dissociation behavior in tin-lead organohalide perovskites. Nano Energy 2016, 27, 638–646. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C.R.; Cimaroli, A.J.; Guan, L.; Ellingson, R.J.; Zhu, K.; et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018. [Google Scholar] [CrossRef]
- Tsai, C.M.; Wu, H.P.; Chang, S.T.; Huang, C.F.; Wang, C.H.; Narra, S.; Yang, Y.W.; Wang, C.L.; Hung, C.H.; Diau, E.W.G. Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode. ACS Energy Lett. 2016, 1, 1086–1093. [Google Scholar] [CrossRef]
- Liu, C.; Fan, J.; Li, H.; Zhang, C.; Mai, Y. Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapil, G.; Ripolles, T.S.; Hamada, K.; Ogomi, Y.; Bessho, T.; Kinoshita, T.; Chantana, J.; Yoshino, K.; Shen, Q.; Toyoda, T.; et al. Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Lett. 2018, 18, 3600–3607. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, Z.; Chen, X.; Chen, X.; Xu, X.; Liu, T.; Bai, L.; Yang, D.; Di, D.; Sha, W.E.I.; et al. Power conversion efficiency enhancement of low-bandgap mixed Pb-Sn perovskite solar cells by improved interfacial charge transfer. ACS Energy Lett. 2019, 4, 1784–1790. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Zhao, D.; Xiao, C.; Subedi, B.; Shrestha, N.; Junda, M.M.; Wang, C.; Jiang, C.S.; Al-Jassim, M.; et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv. Energy Mater. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Xu, X.; Chueh, C.C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S.B.; Jen, A.K.Y. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 2017, 34, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.; Cho, J.Y.; Heo, J.; Lee, S. Fabrication of MASnI3 and MASnxPb(1−x)I3 thin films by conversion from SnS thin film. Appl. Sci. Converg. Technol. 2018, 27, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Spanopoulos, I.; Tu, Q.; Hadar, I.; Li, X.; Shekhawat, G.S.; Dravid, V.P.; Kanatzidis, M.G. Ethylenediammonium-based “hollow” Pb/Sn perovskites with ideal band gap yield solar cells with higher efficiency and stability. J. Am. Chem. Soc. 2019, 141, 8627–8637. [Google Scholar] [CrossRef]
- Du, X.; Qiu, R.; Zou, T.; Chen, X.; Chen, H.; Zhou, H. Enhanced uniformity and stability of Pb–Sn perovskite solar cells via Me4NBr passivation. Adv. Mater. Interfaces 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Tong, J.; Song, Z.; Kim, D.H.; Chen, X.; Chen, C.; Palmstrom, A.F.; Ndione, P.F.; Reese, M.O.; Dunfield, S.P.; Reid, O.G.; et al. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479. [Google Scholar] [CrossRef]
- Lian, X.; Chen, J.; Zhang, Y.; Qin, M.; Li, J.; Tian, S.; Yang, W.; Lu, X.; Wu, G.; Chen, H. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: A two-step fabrication process. Adv. Funct. Mater. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Klug, M.T.; Milot, R.L.; Milot, R.L.; Patel, J.B.; Green, T.; Sansom, H.C.; Farrar, M.D.; Ramadan, A.J.; Martani, S.; Wang, Z.; et al. Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers. Energy Environ. Sci. 2020, 13, 1776–1787. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Chen, C.; Xiao, C.; Subedi, B.; Harvey, S.P.; Shrestha, N.; Subedi, K.K.; Chen, L.; Liu, D.; et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 2020, 5, 768–776. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Li, Z.; Shi, T.; Yang, Y.; Yip, H.L.; Cao, Y. Stable Sn/Pb-based perovskite solar cells with a coherent 2D/3D interface. iScience 2018, 9, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, W.; Chen, C.; Spanopoulos, I.; Mao, L.; Hadar, I.; Li, X.; Hoffman, J.M.; Song, Z.; Yan, Y.; Kanatzidis, M.G. Narrow-bandgap mixed lead/tin-based 2D Dion-Jacobson perovskites boost the performance of solar cells. J. Am. Chem. Soc. 2020, 142, 15049–15057. [Google Scholar] [CrossRef] [PubMed]
- Ngqoloda, S.; Arendse, C.J.; Muller, T.F.; Miceli, P.F.; Guha, S.; Mostert, L.; Oliphant, C.J. Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor. ACS Appl. Energy Mater. 2020, 3, 2350–2359. [Google Scholar] [CrossRef]
- Pammi, S.V.N.; Lee, H.W.; Eom, J.H.; Yoon, S.G. Predominant stable MAPbI3 films deposited via chemical vapor deposition: Stability studies in illuminated and darkened states coupled with temperature under an open-air atmosphere. ACS Appl. Energy Mater. 2018, 1, 3301–3312. [Google Scholar] [CrossRef]
- Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934–2938. [Google Scholar] [CrossRef]
- Wei, H.; Tang, Y.; Feng, B.; You, H. Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chin. Phys. B 2017, 26. [Google Scholar] [CrossRef]
- Moreno-Romero, P.M.; Corpus-Mendoza, A.N.; Millán-Franco, M.A.; Rodríguez-Castañeda, C.A.; Torres-Herrera, D.M.; Liu, F.; Hu, H. Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency. J. Mater. Sci. Mater. Electron. 2019, 30, 17491–17503. [Google Scholar] [CrossRef]
- Félix, R.; Llobera-Vila, N.; Hartmann, C.; Klimm, C.; Hartig, M.; Wilks, R.G.; Bär, M. Preparation and in-system study of SnCl2 precursor layers: Towards vacuum-based synthesis of Pb-free perovskites. RSC Adv. 2018, 8, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Popov, G.; Mattinen, M.; Hatanpää, T.; Vehkamäki, M.; Kemell, M.; Mizohata, K.; Räisänen, J.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of PbI2 Thin Films. Chem. Mater. 2019, 31, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Tsevas, K.; Smith, J.A.; Kumar, V.; Rodenburg, C.; Fakis, M.; Mohd Yusoff, A.R.b.; Vasilopoulou, M.; Lidzey, D.G.; Nazeeruddin, M.K.; Dunbar, A.D.F. Controlling PbI2 Stoichiometry during Synthesis to Improve the Performance of Perovskite Photovoltaics. Chem. Mater. 2021. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Dixit, P.N.; Rauthan, C.M.S.; Sharma, R. Composition of glass substrates, an important consideration for depositing adherent diamond-like carbon films. J. Mater. Sci. Lett. 2000, 19, 2055–2057. [Google Scholar] [CrossRef]
- Shihada, A.F.; Abushamleh, A.S.; Weller, F. Crystal structures and raman spectra of tin complexes 1–4 (see abstract). Zeitschrift Anorg. Allg. Chem. 2004, 630, 841–847. [Google Scholar] [CrossRef]
- King, H.W. Quantitative size-factors for metallic solid solutions. J. Mater. Sci. 1966, 1, 79–90. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Schuh, C.A. Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 2015, 82, 123–136. [Google Scholar] [CrossRef]
- Bafna, M.; Garg, N. Investigation of Optical Properties of Tin Chloride (SnCl2) Doped Poly Methyl Methacrylate (PMMA) Composite Films. IIS Univ. J. Sci. Technol. 2017, 6, 27–32. [Google Scholar]
- Zhu, X.; Wangyang, P.; Sun, H.; Yang, D.; Gao, X.; Tian, H. Facile growth and characterization of freestanding single crystal PbI2 film. Mater. Lett. 2016, 180, 59–62. [Google Scholar] [CrossRef]
- Ghosh, T.; Bandyopadhyay, S.; Roy, K.K.; Kar, S.; Lahiri, A.K.; Maiti, A.K.; Goswami, K. Optical and structural properties of lead iodide thin films prepared by vacuum evaporation method. Cryst. Res. Technol. 2008, 43, 959–963. [Google Scholar] [CrossRef]
- Ngqoloda, S.; Arendse, C.J.; Guha, S.; Muller, T.F.; Klue, S.C.; Magubane, S.S.; Oliphant, C.J. Mixed-halide perovskites solar cells through PbICl and PbCl2 precursor films by sequential chemical vapor deposition. Sol. Energy 2021, 215, 179–188. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Goyal, A.; McKechnie, S.; Pashov, D.; Tumas, W.; Van Schilfgaarde, M.; Stevanović, V. Origin of Pronounced Nonlinear Band Gap Behavior in Lead-Tin Hybrid Perovskite Alloys. Chem. Mater. 2018, 30, 3920–3928. [Google Scholar] [CrossRef]
- Rajagopal, A.; Stoddard, R.J.; Hillhouse, H.W.; Jen, A.K.Y. On understanding bandgap bowing and optoelectronic quality in Pb-Sn alloy hybrid perovskites. J. Mater. Chem. A 2019, 7, 16285–16293. [Google Scholar] [CrossRef]
- Parrott, E.S.; Green, T.; Milot, R.L.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites. Adv. Funct. Mater. 2018, 28, 1–11. [Google Scholar] [CrossRef]
- Boubaker, K. A physical explanation to the controversial urbach tailing universality. Eur. Phys. J. Plus 2011, 126, 1–4. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, X.; Yang, D.; Yang, J.; Gao, X.; Li, X. Morphological and structural evolution during thermally physical vapor phase growth of PbI2 polycrystalline thin films. J. Cryst. Growth 2014, 405, 29–34. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Z.; Li, J.; Jen, A.K.Y.; Wang, L. Inorganic CsPb1−xSnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1–8. [Google Scholar] [CrossRef]
Sample ID | Layer Depth (×1017 Atoms/cm2) | Cl | Sn | I | Pb | |
---|---|---|---|---|---|---|
Lead iodide | L1 | 1.94 | - | - | 0.65 | 0.35 |
L2 | 1.67 | - | - | 0.64 | 0.36 | |
(2.5:20) mg | L1 | 2.28 | 0.18 | 0.07 | 0.44 | 0.31 |
L2 | 1.94 | 0.54 | 0.14 | 0.16 | 0.10 | |
(5:20) mg | L1 | 2.94 | 0.42 | 0.04 | 0.20 | 0.34 |
L2 | 0.95 | 0.36 | 0.31 | 0.03 | 0.29 | |
L3 | 0.70 | 0.52 | 0.29 | 0.11 | 0.07 | |
(10:20) mg | L1 | 1.40 | 0.48 | 0.15 | 0.03 | 0.34 |
L2 | 1.51 | 0.38 | 0.33 | 0.05 | 0.24 | |
L3 | 2.03 | 0.50 | 0.34 | 0.04 | 0.12 | |
(15:20) mg | L1 | 2.25 | 0.41 | 0.21 | 0.04 | 0.34 |
L2 | 1.81 | 0.47 | 0.34 | 0.02 | 0.17 | |
L3 | 1.95 | 0.57 | 0.36 | 0.01 | 0.06 |
Sample | a = b (Å) | c (Å) | Vol (Å3) | FWHM (ᵒ) | Crystallite Size (nm) |
---|---|---|---|---|---|
MAPbI3 | 8.85 | 12.62 | 988.4 | 0.1139 | 71.9 |
MAPb0.69Sn0.31I3 | 8.83 | 12.67 | 987.9 | 0.1788 | 45.8 |
MAPb0.52Sn0.41I3 | 8.82 | 12.66 | 984.9 | 0.1327 | 61.6 |
MAPb0.46Sn0.54I3 | 8.82 | 12.65 | 984.1 | 0.1568 | 52.2 |
MAPb0.39Sn0.61I3 | 8.82 | 12.64 | 983.3 | 0.1608 | 50.9 |
MASnI3 | 8.80 | 12.53 | 970.3 | 0.1254 | 65.6 |
Sample | Energy Bandgap (eV) | Urbach Energy (meV) |
---|---|---|
MAPbI3 | 1.59 ± 0.03 | 70 ± 10 |
MAPb0.69Sn0.31I3 | 1.58 ± 0.03 | 60 ± 10 |
MAPb0.52Sn0.41I3 | 1.44 ± 0.06 | 220 ± 10 |
MAPb0.46Sn0.54I3 | 1.41 ± 0.09 | 260 ± 10 |
MAPb0.39Sn0.61I3 | 1.26 ± 0.09 | 280 ± 60 |
MASnI3 | 1.15 ± 0.08 | 530 ± 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magubane, S.S.; Arendse, C.J.; Ngqoloda, S.; Cummings, F.; Mtshali, C.; Bolokang, A.S. Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials 2021, 14, 3526. https://doi.org/10.3390/ma14133526
Magubane SS, Arendse CJ, Ngqoloda S, Cummings F, Mtshali C, Bolokang AS. Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials. 2021; 14(13):3526. https://doi.org/10.3390/ma14133526
Chicago/Turabian StyleMagubane, Siphesihle Siphamandla, Christopher Joseph Arendse, Siphelo Ngqoloda, Franscious Cummings, Christopher Mtshali, and Amogelang Sylvester Bolokang. 2021. "Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films" Materials 14, no. 13: 3526. https://doi.org/10.3390/ma14133526
APA StyleMagubane, S. S., Arendse, C. J., Ngqoloda, S., Cummings, F., Mtshali, C., & Bolokang, A. S. (2021). Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials, 14(13), 3526. https://doi.org/10.3390/ma14133526