Effects of Thermal Conductive Materials on the Freeze-Thaw Resistance of Concrete
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experiments
2.2.1. Compressive Strength Test
2.2.2. Flexural Strength Test
2.2.3. Dry Density
2.2.4. Thermal Conductivity
2.2.5. Freeze–Thaw Test
2.2.6. Rapid Cyclic Thermal Attack Test
3. Results and Discussion
3.1. Compressive Strength Restuls
3.2. Flexural Strength Restuls
3.3. Dry Density Results
3.4. Thermal Conductivity Results
3.5. Freeze–Thaw Test Results
3.6. Rapid Cyclic Thermal Attack Results
4. Conclusions
- Arched type steel fiber improves the mechanical properties of concrete due to the anchorage effect. On the contrary, it was demonstrated that using graphite brought about a negative effect on the mechanical properties. However, graphite is a good material for improving the thermal conductivity of concrete. Therefore, the decrease in mechanical properties caused by using graphite could be compensated by using arched type steel fiber.
- SiC is able to be used as fine aggregate and has sufficient thermal conductivity. In addition, it was demonstrated that the steel fiber could be used as a thermal conductive material through the thermal conductivity results. The combination of SiC and steel fiber maximized the improvement in the thermal conductivity of concrete. Adding graphite also brought about an increase in thermal conductivity.
- It was demonstrated that using graphite is not suitable for FT and RCTA resistance through the results of the FT test and RCTA test. However, the arched type steel fiber showed a remarkable improvement of the FT resistance and RCTA. In addition, SiC compensated for the negative effect of graphite on the FT and RCTA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Jahanian, M.; Ramakrishnan, K. Black ice! using information centric networks for timely vehicular safety information dissemination. In Proceedings of the 2017 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Osaka, Japan, 12–14 June 2017; pp. 1–6. [Google Scholar]
- Wang, K.; Nelsen, D.E.; Nixon, W.A. Damaging effects of deicing chemicals on concrete materials. Cem. Concr. Compos. 2006, 28, 173–188. [Google Scholar] [CrossRef]
- Seo, T.; Jung, Y.; Kim, J.; Na, O. Durability of steam-cured concrete with slag under the combined deterioration of freeze-thaw cycles and de-icing chemicals. Struct. Concr. 2017, 18, 75–83. [Google Scholar] [CrossRef]
- Matalkah, F.; Soroushian, P. Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement. Constr. Build. Mater. 2018, 163, 200–213. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Wang, S.-G.; Wu, Z.-M.; Che, G.-J. Concrete slab installed with carbon fiber heating wire for bridge deck deicing. J. Transp. Eng. 2010, 136, 500–509. [Google Scholar] [CrossRef]
- Liu, X.; Rees, S.J.; Spitler, J.D. Modeling snow melting on heated pavement surfaces. Part II: Experimental validation. Appl. Therm. Eng. 2007, 27, 1125–1131. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Y.; Ma, D. Research of carbon fibre grille reinforced composites in airport pavement snowmelt. Mater. Res. Innov. 2015, 19, S10–49. [Google Scholar] [CrossRef]
- Liew, K.; Kai, M.; Zhang, L. Carbon nanotube reinforced cementitious composites: An overview. Compos. Part A Appl. Sci. Manuf. 2016, 91, 301–323. [Google Scholar] [CrossRef]
- Chang, C.; Ho, M.; Song, G.; Mo, Y.-L.; Li, H. A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct. 2009, 18, 127001. [Google Scholar] [CrossRef]
- Kim, G.; Naeem, F.; Kim, H.; Lee, H.-K. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Compos. Struct. 2016, 136, 162–170. [Google Scholar] [CrossRef]
- Lee, H.; Kang, D.; Song, Y.M.; Chung, W. Heating experiment of CNT cementitious composites with single-walled and multiwalled carbon nanotubes. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Manzur, T.; Yazdani, N.; Emon, M.; Bashar, A. Potential of carbon nanotube reinforced cement composites as concrete repair material. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Gomis, J.; Galao, O.; Gomis, V.; Zornoza, E.; Garcés, P. Self-heating and deicing conductive cement. Experimental study and modeling. Constr. Build. Mater. 2015, 75, 442–449. [Google Scholar] [CrossRef]
- Frąc, M.; Pichór, W.; Szołdra, P. Cement composites with expanded graphite as resistance heating elements. J. Compos. Mater. 2020, 54, 3821–3831. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, L.; Zhang, Q.; Nie, Z.; Hao, L. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting. Energy Build. 2018, 159, 66–74. [Google Scholar] [CrossRef]
- Yuan, H.-W.; Lu, C.-H.; Xu, Z.-Z.; Ni, Y.-R.; Lan, X.-H. Mechanical and thermal properties of cement composite graphite for solar thermal storage materials. Sol. Energy 2012, 86, 3227–3233. [Google Scholar] [CrossRef]
- Liu, S.; Wu, M.; Rao, M.; Li, L.; Xiao, H. Preparation, Properties, and Microstructure of Graphite Powder-Containing Conductive Concrete. Strength Mater. 2019, 51, 76–84. [Google Scholar] [CrossRef]
- Wu, S.P.; Wang, P.; Li, B.; Pang, L.; Guo, F. Study on mechanical and thermal properties of graphite modified cement concrete. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; pp. 84–88. [Google Scholar]
- Pedreros, L.; Cárdenas, F.; Ramírez, N.; Forero, E. NDT non-destructive test for quality evaluation of concrete specimens by ultrasonic pulse velocity measurement. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Cartagena, Colombia, 30 October–1 November 2019; p. 012041. [Google Scholar]
- Kim, H.G.; Qudoos, A.; Jeon, I.K.; Woo, B.H.; Ryou, J.S. Assessment of PCM/SiC-based composite aggregate in concrete: Energy storage performance. Constr. Build. Mater. 2020, 258, 119637. [Google Scholar] [CrossRef]
- Zywietz, A.; Karch, K.; Bechstedt, F. Influence of polytypism on thermal properties of silicon carbide. Phys. Rev. B 1996, 54, 1791. [Google Scholar] [CrossRef]
- Jeon, I.K.; Qudoos, A.; Jakhrani, S.H.; Kim, H.G.; Ryou, J.-S. Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder. Powder Technol. 2020, 359, 181–189. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Song, W.; Li, C.; Zhao, S. Development of steel fiber-reinforced expanded-shale lightweight concrete with high freeze-thaw resistance. Adv. Mater. Sci. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, Q.; Chen, Y.; Shi, Y.; Ling, Y.-F. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials 2019, 12, 2184. [Google Scholar] [CrossRef] [Green Version]
- Alsaif, A.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Freeze-thaw resistance of steel fibre reinforced rubberised concrete. Constr. Build. Mater. 2019, 195, 450–458. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Si, R.; Ma, Y.; Guo, S. Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC). J. Clean. Prod. 2020, 277, 123180. [Google Scholar] [CrossRef]
- Niu, D.; Jiang, L.; Bai, M.; Miao, Y. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater. Des. 2013, 44, 267–273. [Google Scholar] [CrossRef]
- Rao, R.; Fu, J.; Chan, Y.; Tuan, C.Y.; Liu, C. Steel fiber confined graphite concrete for pavement deicing. Compos. Part B Eng. 2018, 155, 187–196. [Google Scholar] [CrossRef]
- Pundienė, I.; Korjakins, A.; Pranckevičienė, J.; Kligys, M. Effect of silicon carbide aggregate, prepared by different methods, on the properties of refractory concrete with cenospheres. Ceram. Int. 2018, 44, 15944–15953. [Google Scholar] [CrossRef]
- ASTM. C150/C150M-17, Standard Specification for Portland Cement; American Society for Testing Materials: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM. C33, Standard Specification for Concrete Aggregates; American Society for Testing Materials: Philadelphia, PA, USA, 2003. [Google Scholar]
- Tanesi, J.; Meininger, R. Freeze-thaw resistance of concrete with marginal air content. Transp. Res. Rec. 2007, 2020, 61–66. [Google Scholar] [CrossRef] [Green Version]
- ASTM. C39/C39M, Standard Test Method for Compressive Strength of Cylindrical Test Specimens; ASTM Standards: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM. C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM. C1609/C1609M-19, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading); American Society for Testing Materials: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ASTM. C948-81, Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. Thermal conductivity of concrete–A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Jittabut, P.; Chindaprasirt, P.; Pinitsoontorn, S. Experimental and Modeling Studies on Thermal Conductivity of Cement Composites Containing Nanosilica. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; pp. 119–123. [Google Scholar]
- Majewski, Ł.; Jaskulski, R.; Kubissa, W. Influence of partial replacement of sand with copper slag on the thermal properties of hardened concrete. In Proceedings of the 13th International Conference—Modern Building Materials, Structures and Techniques, VGTU, Vilnius, Lithuania, 16–17 May 2019. [Google Scholar]
- Shi, J.; Liu, Y.; Liu, B.; Han, D. Temperature effect on the thermal conductivity of expanded polystyrene foamed concrete: Experimental investigation and model correction. Adv. Mater. Sci. Eng. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- ASTM. C666/C666M-03: Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Zhang, J.; Yan, C.W.; Jia, J.Q. Compressive strength and splitting tensile strength of steel fiber reinforced ultra high strength concrete (SFRC). In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2010; pp. 1441–1444. [Google Scholar]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.; He, G.; Shang, Q.; Xu, J.; Sun, Y. Mechanical properties of steel fiber-reinforced concrete by vibratory mixing technology. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Woo, B.H.; Jeon, I.K.; Yoo, D.H.; Kim, H.G.; Ryou, J.-S. Ice-Melting Performance Assessment of Cement Composites Using Silicon Carbide as Fine Aggregate. Appl. Therm. Eng. 2021, 117113. [Google Scholar] [CrossRef]
- Won, J.-P.; Lee, J.-H.; Lee, S.-J. Flexural behaviour of arch-type steel fibre reinforced cementitious composites. Compos. Struct. 2015, 134, 565–571. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Xie, P.; Najm, H. Analysis of thermal conductivity of porous concrete using laboratory measurements and microstructure models. Constr. Build. Mater. 2019, 218, 90–98. [Google Scholar] [CrossRef]
- Shabbar, R.; Nedwell, P.; Wu, Z. Porosity and Water Absorption of Aerated Concrete with Varying Aluminium Powder Content. Int. J. Eng. Technol. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.P.; Kim, M.; Ann, K.Y. Porosity generation arising from steel fibre in concrete. Constr. Build. Mater. 2015, 94, 433–436. [Google Scholar] [CrossRef]
- Shang, H.-s.; Cao, W.-q.; Wang, B. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Li, X.K.; Song, W.H.; Li, C.Y. A review on frost resistance of steel fiber reinforced lightweight aggregate concrete. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; pp. 295–299. [Google Scholar]
- Won, J.-P.; Lee, J.-H.; Lee, S.-J. Bonding behaviour of arch-type steel fibres in a cementitious composite. Compos. Struct. 2015, 133, 117–123. [Google Scholar] [CrossRef]
- Won, J.-P.; Lee, J.-H.; Lee, S.-J. Predicting pull-out behaviour based on the bond mechanism of arch-type steel fibre in cementitious composite. Compos. Struct. 2015, 134, 633–644. [Google Scholar] [CrossRef]
Chemical Composition (%) | |||||
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Other |
20.8 | 6.3 | 3.2 | 62 | 3.3 | 4.4 |
Physical properties | |||||
Blaine (cm2/g) | Specific gravity (ton/m3) | ||||
3200 | 3.15 |
Chemical Composition (%) | Other Properties | ||
---|---|---|---|
C | Other | Specific Gravity (ton/m3) | Thermal Conductivity (W/mK) |
86% | 14% | 0.83 | 110 |
Chemical Composition (%) | |||
SiC | Fe2O3 | Fe3C | Other |
94 | 0.7 | 0.5 | 4.8 |
Other properties | |||
Tensile strength (MPa) | Elastic modulus (GPa) | Specific gravity (ton/m3) | Thermal conductivity (W/mK) |
620 | 192 | 3.22 | 25.5–40 |
Tensile Strength (MPa) | Specific Gravity (ton/m3) | Aspect Ratio (%) | Thermal Conductivity (W/mK) |
---|---|---|---|
1500 | 7.85 | 56 (Length: 42 mm, Diameter: 0.75 mm) | 57 |
Specimen | W/C (%) | Water | Cement | Fine Agg | Coarse Agg | Water Reducer | SiC | Graphite | Steel Fiber |
---|---|---|---|---|---|---|---|---|---|
S0-G0-SF0 | 55 | 225.5 | 410 | 764 | 1032 | 4.1 | 0 | 8.26 | 0 |
S0-G0-SF1 | 764 | 0 | 78.5 | ||||||
S0-G5-SF0 | 764 | 0 | 0 | ||||||
S0-G5-SF1 | 764 | 0 | 78.5 | ||||||
S50-G5-SF1 | 382 | 382 | 78.5 | ||||||
S100-G5-SF1 | 0 | 764 | 78.5 |
Specimen | S0-G0-SF0 | S0-G0-SF1 | S0-G5-SF0 | S0-G5-SF1 | S50-G5-SF1 | S100-G5-SF1 |
---|---|---|---|---|---|---|
Air content (%) | 4.2 | 4.4 | 3.6 | 4.0 | 3.8 | 4.2 |
Specimen | S0-G0-SF0 | S0-G0-SF1 | S0-G5-SF0 | S0-G5-SF1 | S50-G5-SF1 | S100-G5-SF1 |
---|---|---|---|---|---|---|
Elastic modulus (MPa) | 24,561 | 26,860 | 21,981 | 24,432 | 24,111 | 22,663 |
Specimen | S0-G0-SF0 | S0-G0-SF1 | S0-G5-SF0 | S0-G5-SF1 | S50-G5-SF1 | S100-G5-SF1 |
---|---|---|---|---|---|---|
Could not measure | 6.465 | Could not measure | 6.252 | 5.538 | 5.316 |
Specimen | S0-G0-SF0 | S0-G0-SF1 | S0-G5-SF0 | S0-G5-SF1 | S50-G5-SF1 | S100-G5-SF1 |
---|---|---|---|---|---|---|
Water absorption (%) | 4.682 | 4.923 | 5.593 | 7.076 | 5.694 | 6.449 |
Dry density (kg/m3) | 2098.24 | 2145.61 | 1967.79 | 2019.11 | 2110.11 | 2047.97 |
Specimen | S0-G0-SF0 | S0-G0-SF1 | S0-G5-SF0 | S0-G5-SF1 | S50-G5-SF1 | S100-G5-SF1 |
---|---|---|---|---|---|---|
Before RCTA (MPa) | 46.14 | 53.37 | 38.28 | 49.58 | 45.19 | 34.19 |
After RCTA (MPa) | 30.82 | 45.81 | 21.07 | 34.62 | 34.89 | 24.34 |
Reduction ratio (%) | 33.20 | 14.16 | 44.96 | 30.17 | 22.79 | 28.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, B.-H.; Yoo, D.-H.; Kim, S.-S.; Lee, J.-B.; Ryou, J.-S.; Kim, H.-G. Effects of Thermal Conductive Materials on the Freeze-Thaw Resistance of Concrete. Materials 2021, 14, 4063. https://doi.org/10.3390/ma14154063
Woo B-H, Yoo D-H, Kim S-S, Lee J-B, Ryou J-S, Kim H-G. Effects of Thermal Conductive Materials on the Freeze-Thaw Resistance of Concrete. Materials. 2021; 14(15):4063. https://doi.org/10.3390/ma14154063
Chicago/Turabian StyleWoo, Byeong-Hun, Dong-Ho Yoo, Seong-Soo Kim, Jeong-Bae Lee, Jae-Suk Ryou, and Hong-Gi Kim. 2021. "Effects of Thermal Conductive Materials on the Freeze-Thaw Resistance of Concrete" Materials 14, no. 15: 4063. https://doi.org/10.3390/ma14154063
APA StyleWoo, B.-H., Yoo, D.-H., Kim, S.-S., Lee, J.-B., Ryou, J.-S., & Kim, H.-G. (2021). Effects of Thermal Conductive Materials on the Freeze-Thaw Resistance of Concrete. Materials, 14(15), 4063. https://doi.org/10.3390/ma14154063