Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning
Abstract
:1. Introduction
1.1. Intrinsic Healing Concrete
1.1.1. Precipitate Formation
1.1.2. Continued Hydration
1.1.3. ASR
1.2. Enhanced Autogenous Healing Concrete
1.2.1. Mineral Additions
1.2.2. Crystalline Admixtures
1.2.3. SAP
1.2.4. Fibre
1.3. Agent-Based Healing Concrete
2. Materials and Methods
2.1. Data Collection
2.2. Data Normalisation
2.3. Types of ML Algorithms
2.4. Hyperparameters Tuning
2.4.1. GA
2.4.2. GSA
- The searching scope and length are confirmed, and then, the searching grid is generated.
- The node in the searching grid with the highest accuracy and the lowest coefficient penalty calculated by K-fold validation is defined as the node which can output the best parameter value.
2.5. Prediction Performance Evaluation
3. Results and Discussion
3.1. R2 and RMSE of ML Models
3.2. Sensitive Analysis
4. Conclusions
- This paper identifies that the GSA-GBR ML model has the best performance to predict HP of autogenous healing concrete, as indicated by the R2 value and the RMSE value (0.958 and 0.202, respectively) of GSA-GBR model. On the basis of the R2 value and the RMSE value, it can be attributed that the GSA-GBR ML model has an excellent ability for predicting HP of autogenous healing concrete using the 16 inputs.
- The R2 and the RMSE values of other ML models with five types of algorithms (SVR, RF, ANN, kNN and DTR) optimised by two kinds of hyperparameter tuning methods (GA and GSA) are compared with that of GSA-GBR. The results reveal that GSA has a better optimisation ability than GA on ML models based on DTR.
- The results of the sensitive analysis indicate that CW, CD and TH demonstrate stronger correlation of HP prediction of autogenous healing concrete than other inputs. Most importantly, CW, CD and TH have higher impact on HP prediction of autogenous healing concrete than healing materials characteristics.
- With respect to the future work, the healing performance of agent-based healing concrete can be investigated employing the latest and promising machine learning algorithms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Definition |
ASR | Aggregate Silicate Reaction |
DTR | Decision Tree Regression |
GBR | Gradient Boosting Regression |
GSA | Grid Search Algorithm |
GA | Genetic Algorithm |
HP | Healing Performance |
kNN | k-Nearest Neighbours |
ML | Machine Learning |
RF | Random Forest |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
SAP | Superabsorbent Polymers |
SVR | Support Vector Regression |
References
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Kan, L.L.; Shi, H.S.; Sakulich, A.R.; Li, V.C. Self-healing characterization of engineered cementitious composite materials. ACI Mater. J. 2010, 107, 617–624. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Ramm, W.; Biscoping, M. Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete. Nucl. Eng. Des. 1998, 179, 191–200. [Google Scholar] [CrossRef]
- Bertolini, L.; Bolzoni, F.; Pastore, T.; Pedeferri, P. Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cem. Concr. Res. 2004, 34, 681–694. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Rams, J.; Merino, S.; Viejo, F.; Campo, M. Effect of Reinforcement Coating on the Oxidation Behavior of AA6061/SiC/20p Composite. Oxid. Met. 2005, 63, 215–227. [Google Scholar] [CrossRef]
- De Schutter, G.; Luo, L. Effect of corrosion inhibiting admixtures on concrete properties. Constr. Build. Mater. 2004, 18, 483–489. [Google Scholar] [CrossRef]
- Kuhl, N.; Geitner, R.; Bose, R.; Bode, S.; Dietzek, B.; Schmitt, M.; Popp, J.; Garcia, S.; Van Der Zwaag, S.; Schubert, U.S.; et al. Self-Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromol. Chem. Phys. 2016, 217, 2541–2550. [Google Scholar] [CrossRef]
- Gupta, S.; Pang, S.D.; Kua, H.W. Autonomous healing in concrete by bio-based healing agents—A review. Constr. Build. Mater. 2017, 146, 419–428. [Google Scholar] [CrossRef]
- Snoeck, D.; De Belie, N. From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing—A review. Constr. Build. Mater. 2015, 95, 774–787. [Google Scholar] [CrossRef]
- Huang, X.; Ge, J.; Kaewunruen, S.; Su, Q. The self-sealing capacity of environmentally friendly, highly damped, fibre-reinforced concrete. Materials 2020, 13, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hearn, N. Self-sealing, autogenous healing and continued hydration: What is the difference? Mater. Struct. 1998, 31, 563–567. [Google Scholar] [CrossRef]
- Snoeck, D.; Van Tittelboom, K.; Steuperaert, S.; Dubruel, P.; De Belie, N. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Spec. Issue Artic. J. Intell. Mater. Syst. Struct. 2014, 25, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Provis, J.L.; Kanellopoulos, A.; Sakulich, A.R.; Snoeck, D.; De Belie, N. Autogenous Healing in Strain-Hardening Cementitious Materials With and Without Superabsorbent Polymers: An 8-Year Study. Front. Mater. 2019, 1, 48. [Google Scholar] [CrossRef]
- Mignon, A.; Snoeck, D.; Dubruel, P.; Van Vlierberghe, S.; De Belie, N. Materials Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success? Materials 2017, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Termkhajornkit, P.; Nawa, T.; Yamashiro, Y.; Saito, T. Self-healing ability of fly ash-cement systems. Cem. Concr. Compos. 2009, 31, 195–203. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024. [Google Scholar] [CrossRef]
- Thomas, M.; Fournier, B.; Folliard, K.; Ideker, J.; Shehata, M. Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete. Cem. Concr. Res. 2006, 36, 1842–1856. [Google Scholar] [CrossRef] [Green Version]
- Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 2007, 37, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Van Tittelboom, K.; Gruyaert, E.; Rahier, H.; De Belie, N. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 2012, 37, 349–359. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 2013, 42, 217–224. [Google Scholar] [CrossRef]
- Shim, Y.; Hong, G.; Choi, S. Autogenous Healing of Early-Age Cementitious Materials Incorporating Superabsorbent Polymers Exposed to Wet/Dry Cycles. Materials 2018, 11, 2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. Advances in Applied Ceramics Structural, Functional and Bioceramics Potential of superabsorbent polymer for self-sealing cracks in concrete Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv. Appl. Ceram. 2010, 109, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Mechtcherine, V.; Wyrzykowski, M.; Schröfl, C.; Snoeck, D.; Lura, P.; De Belie, N.; Mignon, A.; Van Vlierberghe, S.; Klemm, A.J.; Almeida, F.C.R.; et al. Application of super absorbent polymers (SAP) in concrete construction-update of RILEM state-of-the-art report. Mater. Struct. 2021, 54, 80. [Google Scholar] [CrossRef]
- Gwon, S.; Ahn, E.; Shin, M. Self-healing of modified sulfur composites with calcium sulfoaluminate cement and superabsorbent polymer. Compos. Part B Eng. 2019, 162, 469–483. [Google Scholar] [CrossRef]
- Homma, D.; Mihashi, H.; Nishiwaki, T. Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 2009, 7, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Kan, L.L.; Shi, H.S. Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials. Constr. Build. Mater. 2012, 29, 348–356. [Google Scholar] [CrossRef]
- Jongvivatsakul, P.; Janprasit, K.; Nuaklong, P.; Pungrasmi, W.; Likitlersuang, S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr. Build. Mater. 2019, 212, 737–744. [Google Scholar] [CrossRef]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1–28. [Google Scholar] [CrossRef]
- Taguchi, Y.; Saito, N.; Fuchigami, K.; Tanaka, M. Preparation of hybrid microcapsules and application to self-healing agent. Polym. Adv. Technol. 2014, 25, 41–47. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N. Self-Healing in Cementitious Materials—A Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suleiman, A.R.; Nehdi, M.L. Modeling self-healing of concrete using hybrid genetic algorithm-artificial neural network. Materials 2017, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Zhou, S. The prediction of self-healing capacity of bacteria-based concrete using machine learning approaches. Comput. Mater. Contin. 2019, 59, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dong, B.; Yang, Z.; Xu, J.; Chen, Q.; Li, H.; Xing, F.; Jiang, Z. Recent Advances in Intrinsic Self-Healing Cementitious Materials. Adv. Mater. 2018, 30, 1705679. [Google Scholar] [CrossRef] [PubMed]
- Gagné, R.; Argouges, M. A study of the natural self-healing of mortars using air-flow measurements. Mater. Struct. 2012, 45, 1625–1638. [Google Scholar] [CrossRef]
- Nishiwaki, T.; Kwon, S.; Homma, D.; Yamada, M.; Mihashi, H. Self-Healing Capability of Fiber-Reinforced Cementitious Composites for Recovery of Watertightness and Mechanical Properties. Materials 2014, 7, 2141–2154. [Google Scholar] [CrossRef] [Green Version]
- Ozbay, E.; Sahmaran, M.; Lachemi, M.; Yücel, H.E. Self-healing of microcracks in high-volume fly-ash-incorporated engineered cementitious composites. ACI Mater. J. 2013, 110, 33–43. [Google Scholar] [CrossRef]
- Yang, Y.; Lepech, M.D.; Yang, E.H.; Li, V.C. Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 2009, 39, 382–390. [Google Scholar] [CrossRef]
- Naderpour, H.; Hossein, A.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. J. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- DeRousseau, M.A.; Kasprzyk, J.R.; Srubar, W.V. Computational design optimization of concrete mixtures: A review. Cem. Concr. Res. 2018, 109, 42–53. [Google Scholar] [CrossRef]
- Topçu, I.B.; Saridemir, M. Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 42, 74–82. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2015, 528, 312–320. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr. Build. Mater. 2020, 264, 120198. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C.; Zhou, A.; Yang, C.; Zhao, L.; Li, Z. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr. Build. Mater. 2019, 224, 815–822. [Google Scholar] [CrossRef]
- Gholami, R.; Shahraki, A.R.; Jamali Paghaleh, M. Prediction of hydrocarbon reservoirs permeability using support vector machine. Math. Probl. Eng. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Kong, J.M. Application of GA-SVM method with parameter optimization for landslide development prediction. Nat. Hazards Earth Syst. Sci. 2014, 14, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. Telkomnika 2016, 14, 1502–1509. [Google Scholar] [CrossRef]
- Xiao, T.; Ren, D.; Lei, S.; Zhang, J.; Liu, X. Based on grid-search and PSO parameter optimization for Support Vector Machine. Proc. World Congr. Intell. Control Autom. 2015, 2015, 1529–1533. [Google Scholar] [CrossRef]
- Watanabe, M.; Ida, K.; Gen, M. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Comput. Ind. Eng. 2005, 48, 743–752. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; De Magalhães Mendes, J.J.; Resende, M.G.C. A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 2005, 167, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Bilim, C.; Atiş, C.D.; Tanyildizi, H.; Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 2009, 40, 334–340. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Gupta, T.; Patel, K.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sussman, J.M.; Matsumoto, A. Grand challenges in transportation and transit systems. Front. Built Environ. 2016, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
Data Source | Numbers of Data |
---|---|
Gagne and Argouges, [36] | 60 |
Homma et al., [37] | 22 |
Homma et al., [27] | 12 |
Sisomphone et al., [21] | 462 |
Tittelboom et al., [20] | 343 |
Ozbay et al., [38] | 67 |
Yang et al., [39] | 51 |
Kan and Shi, [28] | 400 |
Number | Representation |
---|---|
0 | None |
1 | Calcium sulfoaluminate based expansive additive-α (CSA-α) |
2 | Crystalline additive |
3 | Calcium sulfoaluminate based expansive additive-β (CSA-β) |
4 | PVA fibre |
5 | Polyethene fibre |
6 | Steel cord |
7 | Portland Cement of Grade 42.5 |
8 | Portland Cement of Grade 52.5 |
9 | Ambient water condition |
10 | Ambient air condition |
11 | Wet-dry cycles |
Variables | Unit | Minimum | Maximum |
---|---|---|---|
CM | (%) | 0.1070 | 0.7140 |
CT | - | 1.0000 | 2.0000 |
S | (%) | 0.0000 | 0.0450 |
FA | (%) | 0.0000 | 0.4420 |
WB | - | 0.2500 | 0.6030 |
FAS | (%) | 0.0000 | 0.6590 |
SG | (%) | 0.0000 | 0.6071 |
HM | - | 0.0000 | 6.0000 |
DOHM | (%) | 0.0000 | 0.0310 |
FD | um | 0.0000 | 400.0000 |
FL | um | 0.0000 | 32000.0000 |
FTS | MPa | 0.0000 | 2850.0000 |
CD | days | 3.0000 | 180.0000 |
TH | days | 0.0000 | 150.0000 |
HC | - | 1.0000 | 3.0000 |
CW | um | 0.0000 | 402.0000 |
HP | (%) | 0.0000 | 100.0000 |
Optimisation Algorithms | Drawbacks | Advantages |
---|---|---|
GA | GA requires sophisticated coding. | GA has good robustness in searching for the optimal solution. |
Massive parameters of GA are essential to be controlled. | GA performs an excellent ability on parallel computing. | |
GA is a time-consuming algorithm. | GA can increase the flexibility of searching for the optimal solution. | |
GSA | GSA is a time-consuming algorithm. | GSA is easy coding. |
It is affirmed that GSA can find the optimal solution. |
Algorithms | Parameters | GA | GSA |
---|---|---|---|
ANN | Hidden layers | 3 | 3 |
Hidden neurons | 20–10–5 | 20–10–5 | |
Learning rate | 0.0663 | 0.1001 | |
GBR | Depthmax | 86 | 90 |
Splitmin | 0.0001 | 0.01 | |
Learning rate | 0.0947 | 0.4000 | |
Leafmin | 57 | 21 | |
DTR | Depthmax | 12 | 45 |
Splitmin | 9 | 16 | |
Leafmin | 9 | 1 | |
Gainmin | 0.0775 | 0.3950 | |
SVR | Cpenalty | 25.9007 | 0.0001 |
Epsilon | 0.5621 | 0.0001 | |
Gamma | 9.1228 | 10000.0000 | |
RF | Depthmax | 86 | 64 |
Splitmin | 23 | 0.01 | |
Leafmin | 57 | 17 | |
Gainmin | 56.4671 | 0.3950 | |
kNN | k | 4 | 11 |
Inputs | GSA-GBRs |
---|---|
CM, FA, CT, W | GBR1 |
CM, FA, CT, W, WB | GBR2 |
CM, FA, CT, W, WB, S | GBR3 |
CM, FA, CT, W, WB, S, FAS | GBR4 |
CM, FA, CT, W, WB, S, FAS, SG | GBR5 |
CM, FA, CT, W, WB, S, FAS, SG, HM | GBR6 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM | GBR7 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD | GBR8 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL | GBR9 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS | GBR10 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC | GBR11 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW | GBR12 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW, CD | GBR13 |
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW, CD, TH | GBR14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wasouf, M.; Sresakoolchai, J.; Kaewunruen, S. Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning. Materials 2021, 14, 4068. https://doi.org/10.3390/ma14154068
Huang X, Wasouf M, Sresakoolchai J, Kaewunruen S. Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning. Materials. 2021; 14(15):4068. https://doi.org/10.3390/ma14154068
Chicago/Turabian StyleHuang, Xu, Mirna Wasouf, Jessada Sresakoolchai, and Sakdirat Kaewunruen. 2021. "Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning" Materials 14, no. 15: 4068. https://doi.org/10.3390/ma14154068
APA StyleHuang, X., Wasouf, M., Sresakoolchai, J., & Kaewunruen, S. (2021). Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning. Materials, 14(15), 4068. https://doi.org/10.3390/ma14154068