Bioactive Glass Applications: A Literature Review of Human Clinical Trials
Abstract
:1. Introduction
2. Bioactive Glasses
2.1. Compositions
2.2. Properties of Bioactive Glasses and Mechanisms of Action
2.3. Manufacturing of Bioactive Glasses
2.3.1. Melt Quench Synthesis
2.3.2. The Sol–Gel Method
3. Applications and Clinical Trials
3.1. Clinical Applications of 45S5 Bioglass®
3.2. Clinical Applications of S53P4 Bioactive Glass or BonAlive®
3.3. Clinical Applications of Borate-Based Glasses (19-93B3 Bioactive Glass)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoppe, A.; Boccaccini, A.R. Chapter Bioactive Glasses as Carriers of Therapeutic Ions and the Biological Implications. In Bioactive Glasses; RSC Publishing: London, UK, 2016; pp. 362–392. ISBN 9781782622017. [Google Scholar]
- Ali, S.; Farooq, I.; Iqbal, K. A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent. J. 2014, 26, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Courtney, J.; Qian, H. Bioactive Materials in Medicine: Design and Applications; Woodhead Publishing: Sawston, UK, 2011; ISBN 9781845696245. [Google Scholar]
- Boccaccini, A.R.; Blaker, J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2005, 2, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Miguez-Pacheco, V.; Hench, L.L.; Boccaccini, A.R. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomater. 2015, 13, 1–15. [Google Scholar] [CrossRef]
- Vollenweider, M.; Brunner, T.J.; Knecht, S.; Grass, R.N.; Zehnder, M.; Imfeld, T.; Stark, W.J. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007, 3, 936–943. [Google Scholar] [CrossRef]
- Profeta, A.C.; Prucher, G.M. Bioactive-glass in periodontal surgery and implant dentistry. Dent. Mater. J. 2015, 34, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.R.; Clare, A.G. Bio-Glasses: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9780470711613. [Google Scholar]
- Jones, J.R.; Brauer, D.S.; Hupa, L.; Greenspan, D.C. Bioglass and Bioactive Glasses and Their Impact on Healthcare. Int. J. Appl. Glas. Sci. 2016, 7, 423–434. [Google Scholar] [CrossRef]
- Hench, L.L. Bioactive materials: The potential for tissue regeneration. J. Biomed. Mater. Res. 1998, 41, 511–518. [Google Scholar] [CrossRef]
- Hench, L.L. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.R. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2015, 23, S53–S82. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Felfel, R.M.; Neel, E.A.A.; Grant, D.; Ahmed, I.; Hossain, K.M.Z. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review. J. Tissue Eng. 2017, 8, 204173141771917. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Pandey, O.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. Part A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, L.-C.; Boccaccini, A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 2010, 3, 3867–3910. [Google Scholar] [CrossRef] [Green Version]
- Baino, F.; Novajra, G.; Miguez-Pacheco, V.; Boccaccini, A.R.; Vitale-Brovarone, C. Bioactive glasses: Special applications outside the skeletal system. J. Non Cryst. Solids 2016, 432, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Boccaccini, D.; Cannio, M.; Bernardo, E.; Boccaccini, A.R. Glass and Glass-Ceramic Matrix Composites for Advanced Applications: Part II: Applications. In Encyclopedia of Materials: Technical Ceramics and Glasses; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Abbasi, Z.; Bahroloolum, M.E.; Shariat, M.H.; Bagheri, R. Bioactive Glasses in Dentistry: A Review. J. Glas. Dent. A Rev. 2015, 2, 1–9. [Google Scholar]
- Gul, H.; Zahid, S.; Kaleem, M. Bioglass, a New Trend Towards Clinical Bone Tissue Engineering. Pak. Oral Dent. J. 2015, 35, 706–713. [Google Scholar]
- Sergi, R.; Bellucci, D.; Cannillo, V. A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. Coatings 2020, 10, 757. [Google Scholar] [CrossRef]
- Sergi, R.; Bellucci, D.; Cannillo, V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials 2020, 13, 5560. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Hum, J.; Boccaccini, A.R. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: A review. J. Mater. Sci. Mater. Electron. 2012, 23, 2317–2333. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, A.; Part, J.; Baeza, J. Treatment of Cavitary Bone Defects in Chronic Osteomyelitis: Bioactive glass S53P4 vs. Calcium Sulphate Antibiotic Beads. J. Bone Jt. Infect. 2017, 2, 194–201. [Google Scholar] [CrossRef]
- Li, Y.; Placek, L.M.; Coughlan, A.; Laffir, F.R.; Pradhan, D.; Mellott, N.P.; Wren, A.W. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO–Na2O/SrO bioactive glass. J. Mater. Sci. Mater. Electron. 2015, 26, 1–12. [Google Scholar] [CrossRef]
- Jung, S.B. Bioactive Borate Glasses. In Bio-Glasses: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 75–95. ISBN 9780470711613. [Google Scholar]
- Hupa, L. Melt-derived bioactive glasses. In Bioactive Glasses: Materials, Properties and Applications; Woodhead Publishing: Sawston, UK, 2011; pp. 3–28. ISBN 9781845697686. [Google Scholar]
- Hench, L.L. Chronology of Bioactive Glass Development and Clinical Applications. New J. Glas. Ceram. 2013, 03, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Hench, L.L.; Jones, J.R. Bioactive Glasses: Frontiers and Challenges. Front. Bioeng. Biotechnol. 2015, 3, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef]
- Fabbri, P.; Cannillo, V.; Sola, A.; Dorigato, A.; Chiellini, F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Compos. Sci. Technol. 2010, 70, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Day, R.M.; Boccaccini, A.R.; Shurey, S.; Roether, J.A.; Forbes, A.; Hench, L.L.; Gabe, S.M. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 2004, 25, 5857–5866. [Google Scholar] [CrossRef]
- Bellucci, D.; Sola, A.; Salvatori, R.; Anesi, A.; Chiarini, L.; Cannillo, V. Sol–gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds. Mater. Sci. Eng. C 2014, 43, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, D.; Cannillo, V. A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature. Mater. Lett. 2018, 213, 67–70. [Google Scholar] [CrossRef]
- Sergi, R.; Bellucci, D.; Salvatori, R.; Maisetta, G.; Batoni, G.; Cannillo, V. Zinc containing bioactive glasses with ultra-high crystallization temperature, good biological performance and antibacterial effects. Mater. Sci. Eng. C 2019, 104, 109910. [Google Scholar] [CrossRef]
- Bellucci, D.; Veronesi, E.; Dominici, M.; Cannillo, V. A new bioactive glass with extremely high crystallization temperature and outstanding biological performance. Mater. Sci. Eng. C 2020, 110, 110699. [Google Scholar] [CrossRef] [PubMed]
- Sergi, R.; Bellucci, D.; Salvatori, R.; Anesi, A.; Cannillo, V. A Novel Bioactive Glass Containing Therapeutic Ions with Enhanced Biocompatibility. Materials 2020, 13, 4600. [Google Scholar] [CrossRef]
- Van Gestel, N.; Geurts, J.; Hulsen, D.J.W.; van Rietbergen, B.; Hofmann, S.; Arts, J.J. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review. BioMed Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xynos, I.D.; Edgar, A.J.; Buttery, L.D.K.; Hench, L.L.; Polak, J.M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J. Biomed. Mater. Res. 2001, 55, 151–157. [Google Scholar] [CrossRef]
- Zhao, S.; Li, L.; Wang, H.; Zhang, Y.; Cheng, X.; Zhou, N.; Rahaman, M.N.; Liu, Z.; Huang, W.; Zhang, C. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 2015, 53, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; Hupa, L.; Jokic, B.; Detsch, R.; Grünewald, A.; Boccaccini, A.R. Angiogenic potential of boron-containing bioactive glasses: In Vitro study. J. Mater. Sci. 2016, 52, 8785–8792. [Google Scholar] [CrossRef]
- Naseri, S.; Lepry, W.C.; Nazhat, S.N. Bioactive glasses in wound healing: Hope or hype? J. Mater. Chem. B 2017, 5, 6167–6174. [Google Scholar] [CrossRef]
- Ottomeyer, M.; Mohammadkah, A.; Day, D.; Westenberg, D. Broad-Spectrum Antibacterial Characteristics of Four Novel Borate-Based Bioactive Glasses. Adv. Microbiol. 2016, 6, 776–787. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive glass in tissue engineering. Acta Biomater. 2011, 7, 2355–2373. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Zhao, C.-J.; Cui, X.; Gu, Y.-F.; Jia, W.-T.; Rahaman, M.N.; Wang, Y.; Huang, W.-H.; Zhang, C.-Q. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis. PLoS ONE 2014, 9, e85472. [Google Scholar] [CrossRef] [Green Version]
- Hulsen, D.J.; van Gestel, N.A.; Geurts, J.A.P.; Arts, J.J. S53P4 bioactive glass. In Management of Periprosthetic Joint Infections (PJIs); Woodhead Publishing: Sawston, UK, 2017; ISBN 9780081002421. [Google Scholar]
- Liu, X.; Rahaman, M.N.; Day, D.E. Conversion of melt-derived microfibrous borate (13–93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J. Mater. Sci. Mater. Med. 2013, 24, 583–595. [Google Scholar] [CrossRef]
- Krishnan, V.; Lakshmi, T. Bioglass: A novel biocompatible innovation. J. Adv. Pharm. Technol. Res. 2013, 4, 78–83. [Google Scholar] [CrossRef]
- Coraça-Huber, D.C.; Fille, M.; Hausdorfer, J.; Putzer, D.; Nogler, M. Efficacy of antibacterial bioactive glass S53P4 againstS. aureusbiofilms grown on titanium discs in vitro. J. Orthop. Res. 2014, 32, 175–177. [Google Scholar] [CrossRef]
- Drago, L.; Romanò, D.; De Vecchi, E.; Vassena, C.; Logoluso, N.; Mattina, R.; Romano, C.L. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: An in vitroand prospective clinical study. BMC Infect. Dis. 2013, 13, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gergely, I.; Zazgyva, A.; Man, A.; Zuh, S.; Pop, T.S. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. Acta Microbiol. Immunol. Hung. 2014, 61, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Bigoni, M.; Turati, M.; Zanchi, N.; Lombardo, A.S.; Graci, J.; Omeljaniuk, R.J.; Zatti, G.; Gaddi, D. Clinical applications of Bioactive glass S53P4 in bone infections: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 240–251. [Google Scholar] [PubMed]
- Miola, M.; Vitale-Brovarone, C.; Mattu, C.; Verné, E. Antibiotic loading on bioactive glasses and glass-ceramics: An approach to surface modification. J. Biomater. Appl. 2013, 28, 308–319. [Google Scholar] [CrossRef]
- Rivadeneira, J.; Luz, G.M.; Audisio, M.C.; Mano, J.F.; Gorustovich, A.A. Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride. Biomed. Glas. 2015, 1, 128–135. [Google Scholar] [CrossRef]
- Dorati, R.; DeTrizio, A.; Modena, T.; Conti, B.; Benazzo, F.; Gastaldi, G.; Genta, I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals 2017, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Cui, X.; Zhao, C.; Huang, W.; Wang, J.; Zhang, C. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model. Antimicrob. Agents Chemother. 2013, 57, 3293–3298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Liu, X.; Jia, W.; Zhang, C.; Huang, W.; Wang, J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J. Control. Release 2009, 139, 118–126. [Google Scholar] [CrossRef]
- Mancuso, E.; Bretcanu, O.; Marshall, M.; Dalgarno, K.W. Sensitivity of novel silicate and borate-based glass structures on in vitro bioactivity and degradation behaviour. Ceram. Int. 2017, 43, 12651–12657. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, Z.; Zhang, C.; Pan, H.; Rahaman, M.N.; Zhang, X.; Fu, Q.; Huang, W. Bioactive borate glass scaffolds: In Vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J. Mater. Sci. Mater. Med. 2010, 21, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Rahaman, M.N.; Day, D.E.; Li, Y. Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 2006, 47, 647–658. [Google Scholar]
- Bahniuk, M.S.; Pirayesh, H.; Singh, H.D.; Nychka, J.A.; Unsworth, L.D. Bioactive Glass 45S5 Powders: Effect of Synthesis Route and Resultant Surface Chemistry and Crystallinity on Protein Adsorption from Human Plasma. Biointerphases 2012, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Raucci, M.G.; De Gaetano, F.; Marotta, A. Antibacterial and bioactive silver-containing Na2O·CaO·2SiO2glass prepared by sol–gel method. J. Mater. Sci. Mater. Med. 2004, 15, 831–837. [Google Scholar] [CrossRef]
- Lepry, W.C.; Naseri, S.; Nazhat, S.N. Effect of processing parameters on textural and bioactive properties of sol–gel-derived borate glasses. J. Mater. Sci. 2017, 52, 8973–8985. [Google Scholar] [CrossRef]
- Lepry, W.C.; Nazhat, S.N. Highly Bioactive Sol-Gel-Derived Borate Glasses. Chem. Mater. 2015, 27, 4821–4831. [Google Scholar] [CrossRef]
- Hench, L.L.; Best, S.M. Ceramics, Glasses, and Glass-Ceramics: Basic Principles. In Biomaterials Science: An Introduction to Materials, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 128–151. ISBN 9780123746269. [Google Scholar]
- Faure, J.; Drevet, R.; Lemelle, A.; Ben Jaber, N.; Tara, A.; El Btaouri, H.; Benhayoune, H. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater. Sci. Eng. C 2015, 47, 407–412. [Google Scholar] [CrossRef]
- Pirayesh, H.; Nychka, J.A. Sol-Gel Synthesis of Bioactive Glass-Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior. J. Am. Ceram. Soc. 2013, 96, 1643–1650. [Google Scholar] [CrossRef]
- Li, R.; Clark, A.E.; Hench, L.L. An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 1991, 2, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Salinas, A.J.; Arcos, D. Tailoring the Structure of Bioactive Glasses: From the Nanoscale to Macroporous Scaffolds. Int. J. Appl. Glas. Sci. 2016, 7, 195–205. [Google Scholar] [CrossRef]
- Gmeiner, R.; Deisinger, U.; Schönherr, J.; Lechner, B.; Detsch, R.; Boccaccini, A.R.; Stampfl, J. Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 2015, 6, 75–86. [Google Scholar] [CrossRef]
- Cho, J.; Cannio, M.; Boccaccini, A.R. The Electrophoretic Deposition of Bioglass®/Carbon Nanotube composite layers for bioactive coatings. Int. J. Mater. Prod. Technol. 2009, 35, 260. [Google Scholar] [CrossRef]
- Eqtesadi, S.; Motealleh, A.; Miranda, P.; Pajares, A.; Lemos, A.; Ferreira, J. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 2014, 34, 107–118. [Google Scholar] [CrossRef]
- Tesavibul, P.; Felzmann, R.; Gruber, S.; Liska, R.; Thompson, I.; Boccaccini, A.R.; Stampfl, J. Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater. Lett. 2012, 74, 81–84. [Google Scholar] [CrossRef]
- Boccaccini, D.; Cannio, M.; Bernardo, E.; Boccaccini, A.R. Glass and Glass-Ceramic Matrix Composites for Advanced Applications: Part I: Properties and Manufacturing Technologies. In Encyclopedia of Materials: Technical Ceramics and Glasses; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Furlan, R.G.; Correr, W.R.; Russi, A.F.C.; Iemma, M.R.D.C.; Trovatti, E.; Pecoraro, É. Preparation and characterization of boron-based bioglass by sol−gel process. J. Sol. Gel Sci. Technol. 2018, 88, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci. 2017, 249, 363–373. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Lin, C.; Zhong, W. Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In Vitro hydroxyapatite formation and drug delivery. Colloids Surf. B Biointerfaces 2017, 160, 406–415. [Google Scholar] [CrossRef]
- Siaili, M.; Chatzopoulou, D.; Gillam, D. An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dent. J. 2018, 30, 26–37. [Google Scholar] [CrossRef]
- Huygh, A.; Schepers, E.J.G.; Barbier, L.; Ducheyne, P. Microchemical transformation of bioactive glass particles of narrow size range, a 0–24 months study. J. Mater. Sci. Mater. Med. 2002, 13, 315–320. [Google Scholar] [CrossRef]
- Wilson, J.; Low, S.B. Bioactive ceramics for periodontal treatment: Comparative studies in the patus monkey. J. Appl. Biomater. 1992, 3, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Merwin, G.E. Biomaterials for facial bone augmentation: Comparative studies. J. Biomed. Mater. Res. 1988, 22, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Zamet, J.S.; Darbar, U.R.; Griffiths, G.; Bulman, J.; Brägger, U.; Burgin, W.; Newman, H.N. Particulate bioglassR as a grafting material in the treatment of periodontal intrabony defects. J. Clin. Periodontol. 1997, 24, 410–418. [Google Scholar] [CrossRef]
- Low, S.B.; King, C.J.; Krieger, J. An evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int. J. Periodontics Restor. Dent. 1997, 17, 358–367. [Google Scholar]
- Mengel, R.; Schreiber, D.; Flores-De-Jacoby, L. Bioabsorbable Membrane and Bioactive Glass in the Treatment of Intrabony Defects in Patients with Generalized Aggressive Periodontitis: Results of a 5-Year Clinical and Radiological Study. J. Periodontol. 2006, 77, 1781–1787. [Google Scholar] [CrossRef]
- Gatti, A.M.; Simonetti, L.A.; Monari, E.; Guidi, S.; Greenspan, D. Bone Augmentation with Bioactive Glass in Three Cases of Dental Implant Placement. J. Biomater. Appl. 2006, 20, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Hajatdoost-Sani, M.; Farrell, S.; Thompson, I. A clinical evaluation and comparison of bioactive glass and sodium bicarbonate air-polishing powders. J. Dent. 2010, 38, 475–479. [Google Scholar] [CrossRef]
- Yadav, V.S.; Narula, S.; Sharma, R.; Tewari, S.; Yadav, R. Clinical evaluation of guided tissue regeneration combined with autogenous bone or autogenous bone mixed with bioactive glass in intrabony defects. J. Oral Sci. 2011, 53, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Subbaiah, R.; Thomas, B. Efficacy of a bioactive alloplast, in the treatment of human periodontal osseous defects-a clinical study. Med. Oral Patol. Oral Cir. Bucal 2011, 16, e239–e244. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulos, A.; Sima, C.; Sima, A.; Nyengaard, J.; Karring, T.; Sculean, A. Histological evaluation of healing after transalveolar maxillary sinus augmentation with bioglass and autogenous bone. Clin. Oral Implant. Res. 2012, 23, 125–131. [Google Scholar] [CrossRef]
- Sohrabi, K.; Saraiya, V.; Laage, T.A.; Harris, M.; Blieden, M.; Karimbux, N. An Evaluation of Bioactive Glass in the Treatment of Periodontal Defects: A Meta-Analysis of Randomized Controlled Clinical Trials. J. Periodontol. 2012, 83, 453–464. [Google Scholar] [CrossRef]
- Chacko, N.L.; Abraham, S.; Rao, H.N.S.; Sridhar, N.; Moon, N.; Barde, D.H. A Clinical and Radiographic Evaluation of Periodontal Regenerative Potential of PerioGlas®: A Synthetic, Resorbable Material in Treating Periodontal Infrabony Defects. J. Int. Oral Health 2014, 6, 20–26. [Google Scholar]
- Pereira, R.D.S.; Menezes, J.D.; Bonardi, J.P.; Griza, G.L.; Okamoto, R.; Hochuli-Vieira, E. Histomorphometric and immunohistochemical assessment of RUNX2 and VEGF of Biogran™ and autogenous bone graft in human maxillary sinus bone augmentation: A prospective and randomized study. Clin. Implant. Dent. Relat. Res. 2017, 19, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Menezes, J.; Bonardi, J.; Griza, G.; Okamoto, R.; Hochuli-Vieira, E. Comparative study of volumetric changes and trabecular microarchitecture in human maxillary sinus bone augmentation with bioactive glass and autogenous bone graft: A prospective and randomized assessment. Int. J. Oral Maxillofac. Surg. 2017, 47, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovelace, T.B.; Mellonig, J.T.; Meffert, R.M.; Jones, A.A.; Nummikoski, P.V.; Cochran, D.L. Clinical Evaluation of Bioactive Glass in the Treatment of Periodontal Osseous Defects in Humans. J. Periodontol. 1998, 69, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Froum, S.J.; Weinberg, M.A.; Tarnow, D. Comparison of Bioactive Glass Synthetic Bone Graft Particles and Open Debridement in the Treatment of Human Periodontal Defects. A Clinical Study. J. Periodontol. 1998, 69, 698–709. [Google Scholar] [CrossRef]
- Tadjoedin, E.S.; Lange, G.L.; Holzmann, P.J.; Kuiper, L.; Burger, E.H. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass material of narrow size range. Clin. Oral Implant. Res. 2000, 11, 334–344. [Google Scholar] [CrossRef]
- Nevins, M.; Marcelo, M.; Nevins, V.; King, C.J.; Mscd, D.D.S.; Dds, D.M.S.V.; Schenk, R.K.; Fiorellini, V.P. Human Histologie Evaluation of Bioactive Ceramic in the Treatment of Periodontai Osseous Defects. Int J. Periodontics Restor. Dent. 2000, 20, 459–467. [Google Scholar]
- Cordioli, G.; Mazzocco, C.; Schepers, E.; Brugnolo, E.; Majzoub, Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clin. Oral Implant. Res. 2001, 12, 270–278. [Google Scholar] [CrossRef]
- Mengel, R.; Soffner, M.; Flores-De-Jacoby, L. Bioabsorbable Membrane and Bioactive Glass in the Treatment of Intrabony Defects in Patients with Generalized Aggressive Periodontitis: Results of a 12-Month Clinical and Radiological Study. J. Periodontol. 2003, 74, 899–908. [Google Scholar] [CrossRef]
- El-Ghannam, A.; Amin, H.; Nasr, T.; Shama, A. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects. Int. J. Oral Maxillofac. Implant. 2004, 19, 184–191. [Google Scholar]
- Sculean, A.; Barbé, G.; Chiantella, G.C.; Arweiler, N.B.; Berakdar, M.; Brecx, M. Clinical Evaluation of an Enamel Matrix Protein Derivative Combined With a Bioactive Glass for the Treatment of Intrabony Periodontal Defects in Humans. J. Periodontol. 2002, 73, 401–408. [Google Scholar] [CrossRef]
- Hench, L.L.; Wilson, J. An Introduction to Bioceramics. World Sci. 1993, 1, 41–75. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: Cambridge, MA, USA, 2004; ISBN 0125824637. [Google Scholar]
- Boyne, P.J.; James, R.A. Grafting of the maxillary sinus floor with autogenous marrow and bone. J. Oral Surg. 1980, 38, 613–616. [Google Scholar] [PubMed]
- Lindfors, N.C. Clinical Experience on Bioactive Glass S53P4 in Reconstructive Surgery in the Upper Extremity Showing Bone Remodelling, Vascularization, Cartilage Repair. J. Biotechnol. Biomater. 2011, 1, 1–6. [Google Scholar] [CrossRef]
- Pernaa, K.; Koski, I.; Mattila, K.; Gullichsen, E.; Heikkila, J.; Aho, A.; Lindfors, N. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures—A prospective randomized 11-year follow-up. J. Long. Term. Eff. Med. Implants 2011, 21, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, J.T.; Kukkonen, J.; Aho, A.J.; Moisander, S.; Kyyrönen, T.; Mattila, K. Bioactive glass granules: A suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: A prospective, randomized 1 year follow-up study. J. Mater. Sci. Mater. Med. 2011, 22, 1073–1080. [Google Scholar] [CrossRef]
- Frantzén, J.; Rantakokko, J.; Aro, H.T.; Heinänen, J.; Kajander, S.; Gullichsen, E.; Kotilainen, E.; Lindfors, N.C. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: A prospective 11-year follow-up. J. Spinal Disord. Tech. 2011, 24, 455–461. [Google Scholar] [CrossRef]
- Rantakokko, J.; Frantzén, J.P.; Heinänen, J.; Kajander, S.; Kotilainen, E.; Gullichsen, E.; Lindfors, N. Posterolateral Spondylodesis Using Bioactive Glass S53P4 and Autogenous Bone in Instrumented Unstable Lumbar Spine Burst Fractures. Scand. J. Surg. 2012, 101, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Sarin, J.; Grénman, R.; Aitasalo, K.; Pulkkinen, J. Bioactive Glass S53P4 in Mastoid Obliteration Surgery for Chronic Otitis Media and Cerebrospinal Fluid Leakage. Ann. Otol. Rhinol. Laryngol. 2012, 121, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Silvola, J.T. Mastoidectomy cavity obliteration with bioactive glass: A pilot study. Otolaryngol. Head Neck Surg. 2012, 147, 119–126. [Google Scholar] [CrossRef]
- McAndrew, J.; Efrimescu, C.; Sheehan, E.; Niall, D. Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir. J. Med Sci. 2013, 182, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; Logoluso, N.; Meani, E.; Romanò, D.; De Vecchi, E.; Vassena, C.; Drago, L. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: A retrospective comparative study. Bone Jt. J. 2014, 96 B, 845–850. [Google Scholar] [CrossRef]
- Stoor, P.; Mesimäki, K.; Lindqvist, C.; Kontio, R. The use of anatomically drop-shaped bioactive glass S53P4 implants in the reconstruction of orbital floor fractures—A prospective long-term follow-up study. J. Cranio-Maxillofac. Surg. 2015, 43, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, I.; Aitasalo, K.; Pöllönen, M.; Varpula, M. Reconstruction of orbital floor fractures using bioactive glass. J. Cranio-Maxillofac. Surg. 2000, 28, 229–234. [Google Scholar] [CrossRef]
- Piitulainen, J.M.; Posti, J.P.; Aitasalo, K.M.J.; Vuorinen, V.; Vallittu, P.K.; Serlo, W. Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: Early outcomes. Acta Neurochir. 2015, 157, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Aurégan, J.-C.; Bégué, T. Bioactive glass for long bone infection: A systematic review. Injury 2015, 46, S3–S7. [Google Scholar] [CrossRef]
- Schimanski, G.; Schimanski, E. [Obliteration of mastoid cavities: 30 years of experience with recommendations for surgical strategy]. HNO 2015, 63, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Kankare, J.; Lindfors, N.C. Reconstruction of Vertebral Bone Defects using an Expandable Replacement Device and Bioactive Glass S53P4 in the Treatment of Vertebral Osteomyelitis: Three Patients and Three Pathogens. Scand. J. Surg. 2016, 105, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Bernardeschi, D.; Pyatigorskaya, N.; Russo, F.Y.; De Seta, D.; Corallo, G.; Ferrary, E.; Nguyen, Y.; Sterkers, O. Anatomical, functional and quality-of-life results for mastoid and epitympanic obliteration with bioactive glass s53p4: A prospective clinical study. Clin. Otolaryngol. 2017, 42, 387–396. [Google Scholar] [CrossRef] [PubMed]
- De Vej Mestdagh, P.D.; Colnot, D.R.; Borggreven, P.A.; Orelio, C.C.; Quak, J.J. Mastoid obliteration with S53P4 bioactive glass in cholesteatoma surgery. Acta Otolaryngol. 2017, 137, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.; De Vej Mestdagh, P.D.; Colnot, D.; Borggreven, P.; Orelio, C.; Quak, J. Bioactive glass obliteration of the mastoid significantly improves surgical outcome in non-cholesteatomatous chronic otitis media patients. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 4121–4126. [Google Scholar] [CrossRef] [PubMed]
- Stoor, P.; Apajalahti, S.; Kontio, R. Regeneration of Cystic Bone Cavities and Bone Defects with Bioactive Glass S53P4 in the Upper and Lower Jaws. J. Craniofacial Surg. 2017, 28, 1197–1205. [Google Scholar] [CrossRef]
- Stoor, P.; Apajalahti, S. Osteotomy Site Grafting in Bilateral Sagittal Split Surgery With Bioactive Glass S53P4 for Skeletal Stability. J. Craniofacial Surg. 2017, 28, 1709–1716. [Google Scholar] [CrossRef]
- Syvänen, J.; Nietosvaara, Y.; Kohonen, I.; Koskimies, E.; Haara, M.; Korhonen, J.; Pajulo, O.; Helenius, I. Treatment of Aneurysmal Bone Cysts with Bioactive Glass in Children. Scand. J. Surg. 2017, 107, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Aitasalo, K.; Kinnunen, I.; Palmgren, J.; Varpula, M. Repair of orbital floor fractures with bioactive glass implants. J. Oral Maxillofac. Surg. 2001, 59, 1390–1395. [Google Scholar] [CrossRef]
- Turunen, T.; Peltola, J.; Yli-Urpo, A.; Happonen, R.-P. Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin. Oral Implant. Res. 2004, 15, 135–141. [Google Scholar] [CrossRef]
- Peltola, M.; Aitasalo, K.; Suonpää, J.; Varpula, M.; Yli-Urpo, A. Bioactive glass S53P4 in frontal sinus obliteration: A long-term clinical experience. Head Neck 2006, 28, 834–841. [Google Scholar] [CrossRef]
- Peltola, M.J.; Aitasalo, K.M.; Aho, A.J.; Tirri, T.; Suonpää, J.T. Long-Term Microscopic and Tissue Analytical Findings for 2 Frontal Sinus Obliteration Materials. J. Oral Maxillofac. Surg. 2008, 66, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Peltola, M.; Kinnunen, I.; Aitasalo, K. Reconstruction of Orbital Wall Defects With Bioactive Glass Plates. J. Oral Maxillofac. Surg. 2008, 66, 639–646. [Google Scholar] [CrossRef]
- Lindfors, N.; Hyvönen, P.; Nyyssönen, M.; Kirjavainen, M.; Kankare, J.; Gullichsen, E.; Salo, J. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 2010, 47, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, N.C.; Koski, I.; Heikkilä, J.T.; Mattila, K.; Aho, A.J. A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2010, 94, 157–164. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Büttner, T.; Pacheco, V.M.; Boccaccini, A.R. Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 2018, 38, 855–869. [Google Scholar] [CrossRef]
- Abdelghany, A. Novel method for early investigation of bioactivity in different borate bio-glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 100, 120–126. [Google Scholar] [CrossRef]
- Richard, M.N. Bioactive Behavior of a Borate Glass. Ph.D. Thesis, University of Missouri, Rolla, MO, USA, 2000. [Google Scholar]
- Fu, Q.; Rahaman, M.N.; Fu, H.; Liu, X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. Part A 2010, 95, 164–171. [Google Scholar] [CrossRef]
- Deliormanlı, A.M.; Al-Buriahi, M.S.; Somaily, H.H.; Tekin, H.O. 13-93B3 Bioactive glasses containing Ce3+, Ga3+ and V5+: Dose rate and gamma radiation characteristic for medical purposes. Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–14. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Fu, H.; Yao, A.; Wang, D.; Pan, H.; Lu, W.W.; Jiang, X.; Zhang, X. Bioactive borosilicate glass scaffolds: In vitro degradation and bioactivity behaviors. J. Mater. Sci. Mater. Med. 2009, 20, 1237–1243. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Hupa, L.; Boccaccini, A.R. Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomed. Glas. 2019, 5, 124–139. [Google Scholar] [CrossRef]
- Lepry, W.C.; Nazhat, S.N. A Review of Phosphate and Borate Sol–Gel Glasses for Biomedical Applications. Adv. NanoBiomed Res. 2021, 1. [Google Scholar] [CrossRef]
- Xia, L.; Ma, W.; Zhou, Y.; Gui, Z.; Yao, A.; Wang, D.; Takemura, A.; Uemura, M.; Lin, K.; Xu, Y. Stimulatory Effects of Boron Containing Bioactive Glass on Osteogenesis and Angiogenesis of Polycaprolactone: In Vitro Study. BioMed Res. Int. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yang, K.; Zhou, Z.; Zhu, X.; Li, W.; Cao, C.; Zhou, K.; Liao, L.; Ai, F. Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Front. Bioeng. Biotechnol. 2020, 8, 8. [Google Scholar] [CrossRef]
- Zheng, K.; Fan, Y.; Torre, E.; Balasubramanian, P.; Taccardi, N.; Cassinelli, C.; Morra, M.; Iviglia, G.; Boccaccini, A.R. Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. Part. Part. Syst. Charact. 2020, 37. [Google Scholar] [CrossRef]
- Naseri, S.; Nazhat, S.N. 14—Bioactive and soluble glasses for wound-healing applications. In Bioactive Glasses: Materials, Properties and Applications; Woodhead Publishing: Sawston, UK, 2017; pp. 381–405. ISBN 9780081009369. [Google Scholar]
- Jung, S. Borate Based Bioactive Glass Scaffolds for Hard and Soft Tissue Engineering. Ph.D. Thesis, University of Missouri, Rolla, MO, USA, 2010. [Google Scholar]
- Wray, P. “Cotton Candy” That Heals? Am. Ceram. Soc. Bull. 2010, 90, 25–29. [Google Scholar]
- Liu, X.; Rahaman, M.N.; Hilmas, G.; Bal, B.S. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomater. 2013, 9, 7025–7034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannillo, V.; Leonelli, C.; Boccaccini, A.R. Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites. Mater. Sci. Eng. A 2002, 323, 246–250. [Google Scholar] [CrossRef]
- Cannillo, V.; Montorsi, M.; Siligardi, C.; Sola, A.; De Portu, G.; Micele, L.; Pezzotti, G. Microscale computational simulation and experimental measurement of thermal residual stresses in glass–alumina functionally graded materials. J. Eur. Ceram. Soc. 2006, 26, 1411–1419. [Google Scholar] [CrossRef]
- Cattini, A.; Łatka, L.; Bellucci, D.; Bolelli, G.; Sola, A.; Lusvarghi, L.; Pawłowski, L.; Cannillo, V. Suspension plasma sprayed bioactive glass coatings: Effects of processing on microstructure, mechanical properties and in-vitro behaviour. Surf. Coat. Technol. 2013, 220, 52–59. [Google Scholar] [CrossRef]
- Cannillo, V.; Colmenares-Angulo, J.; Lusvarghi, L.; Pierli, F.; Sampath, S. In vitro characterisation of plasma-sprayed apatite/wollastonite glass–ceramic biocoatings on titanium alloys. J. Eur. Ceram. Soc. 2009, 29, 1665–1677. [Google Scholar] [CrossRef]
Refs. | Glass Composition | Material and Treatment | How/Where and How Long Was the Biomaterial Implanted? | Conclusions | Notes |
---|---|---|---|---|---|
[84] | 45S5 |
|
|
| |
[85] | 45S5 | Bioglass particulates (particle size between 90 and 710 μm); Periodontal osseous defects. | 12 patients; Follow-up: initially at 3, 6, and 24 months post-treatment. |
| Ease handling of BG during treatment and excellent tissue response. |
[86] | 45S5 | Bioglass and polymeric membranes (Millipore® filter or Gore-tex® membrane) |
|
| |
[87] | PerioGlas® | Granules, with particle size from 90 to 710 µm, employed as fillers after tooth extraction. |
|
| |
[88] | 45S5 |
|
| Bioactive glass air-polishing was more clinically and statistically effective in desensitizing; removal of stain with a significant reduction in dental sensitivity in the poor oral hygiene patient subgroup. | 45S5 provided patient comfort during the treatment. |
[89] | PerioGlas® | Treatment of moderate to severe chronic periodontitis. |
|
| Mixture of autogenous bone and bioactive glass effectiveness if the amount of the harvested bone is not sufficient. |
[90] | PerioGlas® | Bioactive alloplast; Treatment of periodontal osseous defects. |
|
| |
[91] | BioGran® (particles with particle size between 300 and 355 µm) and autogeneous bone composite. |
| 31 patients | The tissue fractions occupied by newly formed bone (mineralized tissue bone marrow), soft connective tissue, residual biomaterial empty spaces, and debris inside the sinus cavity or the transalveolar osteotomy were estimated. | No collateral effects on bone formation due to sinus augmentation with a bioglass and autogenous bone composite; similar density as that reported for other commonly used bone substitutes. |
[92] | 45S5 |
|
| Measures of probing depth (PD) and clinical attachment levels. | BG imparts a significant improvement in both probing depth and/or clinical attachment level measures with respect to open flap debridement treatment. |
[93] | PerioGlas® |
|
|
| |
[94] | BioGran® |
| 30 patients: Group 1: 10 maxillary sinuses grafted with Biogran. Group 2: 10 maxillary sinus grafted with Biogran added to autogenous bone graft in a 1:1 ratio. Group 3: 10 maxillary sinus grafted with autogenous bone graft alone. Biopsy samples were collected at the time of dental implant placement and after 6 months. |
|
|
[95] | BioGran® |
|
|
| Further studies are necessary to demonstrate the cellular activity and the osteogenic potential of these biomaterials. |
[96] | 45S5 |
| 15 patients (6 males and 9 females, aged 30 to 63 years). | Results in 6 months similar to those of DFDBA. | |
[97] | 45S5 |
|
|
| |
[98] | BioGran® |
|
| Mixture seems a promising alternative to autogenous bone only when low amounts of bone tissue are available for sinus augmentation. | Bioactive glass particles can help to achieve sufficient bone quantity and quality, provided that a healing time of at least 6 months is used before the implant placement. |
[99] | PerioGlas® |
|
| ||
[100] | BioGran® combined with autogenous bone. |
|
|
| |
[101] | 45S5 | Generalized aggressive periodontitis. |
|
| Both the bioabsorbable membrane and bioactive glass are suitable for the treatment of periodontal intrabony defects |
[102] |
|
|
|
| More rapid bone regeneration observed associated with BG-HCA, which was probably due to the ability of the HCA layer to enhance the selective adsorption and attachment of proteins and growth factors; this fact seemed to stimulate osteoblast adhesion and the subsequent bone deposition. |
[103] | Mixture of enamel matrix derivative (EMD) and 45S5 bioactive glass (BG) or BG alone | Intrabony defects around teeth. | 6 patients: 5 persons with one- and two-walled (five patients) intrabony defects and 1 patient with three-walled intrabony defects |
|
Refs. | Material and Treatment | How/Where and How Long Was the Biomaterial Implanted? | Conclusions | Notes |
---|---|---|---|---|
[40] | S53P4 granules in the range from 0.8 to 3.15 mm. S53P4 nonporous plates or discs of different shapes. | S53P4 as bone graft substitute for osteomyelitis treatment. | Very good outcomes in different applications of glass. | |
[52] | S53P4 granules. |
| Absence of local or systemic side effects connected with the use of the bioactive glass. | |
[107] | S53P4 granules vs. autograft bone. Treatment of benign hand bone tumors. |
|
| |
[108] | S53P4 and autograft bone (AB) as bone graft substitutes in depressed tibial plateau fractures. |
|
| |
[109] | S53P4 produced by melting (granules with size in the range from 0.83 to 3.15 mm) used as filler in the treatment of the lateral tibial plateau compression fractures. |
| Bioactive glass granules revealed good properties as filler material. | |
[110] | S53P4 and autogenous bone (AB) for posterolateral spondylodesis treatment. |
| A solid bony fusion was seen on tomography scans on the AB side in all patients and on the BG side in 12 patients. Glass used as a bone graft extender was demonstrated to be a good alternative in spinal surgery. | |
[111] | S53P4 and autogenous bone (AB) as control. Bioactive glass implant on the left side of the fusion bed and AB implant on the right side. Treatment of fractures in the unstable lumbar spine burst. |
| Total fusion rate of 71% of all fused segments in the BG group. | |
[112] | Glass granules moistened with saline used in mastoid obliteration surgery. |
| 96% of patients: dry, safe ear and only intermittent otorrhea. | |
[113] | S53P4 in granules. Obliteration of mastoidectomy cavity. |
| Ears were dry within a month after the surgery. | |
[114] | S53P4 in granules |
| Good integration of the bioglass with the bone. | Antibiotic post-operation therapy for the treatment of chronic osteomyelitis. |
[115] | S53P4 in granules to fill bone defects after debridement in bone infections. | 27 patients affected by chronic osteomyelitis. | For treatment with bioactive glass without local antibiotics: similar achievement in terms of infection eradication and less drainage than treatment with 2 different antibiotic-loaded calcium-based bone substitutes. | No antibiotic to treat bone defects in infections. |
[116] | Implants of bulk S53P4 were made in 2 sizes with a thickness of 1 mm and rounded edges. |
|
| Antibiotic therapy. |
[117] | S53P4 or autogenous cartilage implants. Bioactive glass plates 1 mm thick, round-, heart-, or kidney-shaped. Orbital floor fractures with persistent diplopia, enophthalmos, and/or infraorbital nerve paresthesia. |
|
| Cranio-maxillofacial surgery required proper closure to avoid exfoliation of material. Bioactive glass demonstrated to be a well-tolerated and promising material for orbital floor fractures. |
[118] | A continuous glass fiber-reinforced composite (FRC) that contained S53P4 as one component. Bioactive glass granules: 500–800 μm (BonAlive®). Resin matrix of FRC: a highly polymerized cross-linked dimethacrylate biocompatible polymer. |
| FRC implant containing particles of glass: safe and a functional option for reconstruction of large skull bone defects. | The implant was moistened in cloxacillin solution. After operation: treatment with intravenous cloxacillin for 3 days. |
[119] | S53P4 granules (BonAlive®). |
| Three cases of osteomyelitis recurred. In two cases, a new procedure was performed. No complication directly related to the bioactive glass was reported. | Mean volume of particles inserted: 16.8 mL. |
[120] | S53P4 granules (BonAlive®) Treatment of cavity obliteration. |
| A combination of S53P4/cartilage led to efficiency for cavity obliteration. | |
[121] | BonAlive® granules in mixture with autologous bone (healthy pieces of the laminectomy bone were used). Treatment of posterolateral spondylodesis and unstable lumbar fractures. |
| Adequate fusion both when glass granules were used alone and in mixture with autologous bone. Fusion rate of 88% when S53P4 was used as a stand-alone bone substitute and in the treatment of posterolateral spondylodesis; fusion rate of 71% for treatment of lumbar fractures. | Follow-up of patient 2 interrupted by his death. |
[122] |
|
| At 1 year, all patients presented a well-healed external auditory canal, with an intact tympanic membrane. | 5-year follow-up is necessary to evaluate the long-term results of the obliteration. |
[123] | S53P4 granules (BonAlive®); Fibrin glue used to cover the S53P4 granules. |
|
| Pre- and postoperative antibiotic therapy. -In line with Bernardeschi et al. [122], the authors did not observe any signs of adverse effects on the inner ear. |
[124] | S53P4 as filler material in mastoid obliteration surgery to treat non-cholesteatomatous chronic otitis media. |
|
| |
[125] | S53P4 bioactive glass granules from 500 to 800 µm or 1.0 to 2.0 mm in size used as cavity filler of bony defects. The granules of the BG S53P4 were moistened with the venous blood of patient or saline before filling the cavity. |
| S53P4 provides effectiveness in the treatment of large bone defects and leads to infection-free and reliable bone regeneration. | Postoperative antibiotic prophylaxis. The material is easier to handle with a smaller granule size. |
[126] | S53P4 granules moistened with saline solution. Stabilization of the S53P4 granules with a fibrin sealant made of human fibrinogen and human thrombin. Tissue glue to prevent migration of the granules, resorbable suture to close the wound. |
|
| Postoperative antibiotic prophylaxis. |
[127] | S53P4 as filling agent. |
|
| |
[130] | S53P4 granules moistened with saline. Bioactive glass used as obliteration material. |
|
| Postoperative antibiotic therapy (5 days). |
[131] | S53P4 granules. Treatment of frontal sinus. | Follow-up of 13 years. |
| |
[132] | S53P4 plates. Reconstructive surgery of the orbit. |
|
| Drawback: plates are brittle and rigid, and difficult to be shaped by a surgeon. |
[133] | S53P4 in treatment of osteomyelitis. Verified chronic osteomyelitis in the lower extremity and the spine. |
|
| |
[134] | S53P4 granules (BonAlive®) and AB harvested from the iliac crest used as a filling material. Size of the glass granules was 1–2 mm in small bone tumors; glass granule sizes of 1–2, 2–3, or 3.15–4 mm in tumors of high extension. | 25 patients (9 females, 16 male); among them, 14 were treated with bioglass. | S53P4 is a good material of choice in benign bone tumor surgery both in children and adults. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannio, M.; Bellucci, D.; Roether, J.A.; Boccaccini, D.N.; Cannillo, V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials 2021, 14, 5440. https://doi.org/10.3390/ma14185440
Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials. 2021; 14(18):5440. https://doi.org/10.3390/ma14185440
Chicago/Turabian StyleCannio, Maria, Devis Bellucci, Judith A. Roether, Dino. N. Boccaccini, and Valeria Cannillo. 2021. "Bioactive Glass Applications: A Literature Review of Human Clinical Trials" Materials 14, no. 18: 5440. https://doi.org/10.3390/ma14185440
APA StyleCannio, M., Bellucci, D., Roether, J. A., Boccaccini, D. N., & Cannillo, V. (2021). Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials, 14(18), 5440. https://doi.org/10.3390/ma14185440