Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes
Abstract
:1. Introduction
2. Fabrication of SiC/SiC Twin Guide Vanes and Cyclic Thermal Shock Experimental Procedure
2.1. Fabrication of SiC/SiC Twin Guide Vanes
2.2. Cyclic Thermal Shock Experimental Procedures
3. Experimental Results and Discussion
3.1. Surface Temperature Distribution for the SiC/SiC Twin Guide Vane under Thermal Shock Test
3.2. Damage Analysis of SiC/SiC Twin Guide Vanes during Thermal Shock Test
4. Summary and Conclusions
- ■
- The temperature in the middle of the leading edge of the left guide vane is the highest. The temperature at the basin region decreased from the leading edge to the trailing edge, and the temperature of the trailing edge was the lowest. The temperature at the trailing edge and leading edge of the right guide vane is the highest, and the temperature of the middle region is the lowest. The temperature of the basin region is higher than that of the back region of the guide vane.
- ■
- Before the thermal shock test, the surface of turbine guide vane is smooth. After 100 cycles, large spalling areas appeared on the leading edge and back region, which were the spalling of SiC sealing coating on the surface of SiC/SiC guide vane. After 400 cycles, the spalling area of the coating at the basin and back region of the guide vane is more than 30%, and the whole guide vane becomes gray under the action of high temperature gas, due to the formation of SiO2 on the surface of SiC/SiC guide vane under high temperature environment. When the thermal shock test temperature was raised to 1450 °C, the spalling area of the basin and the back region of the guide vane did not increase significantly, but the delamination occurred at the tenon of the guide vane. When the thermal shock test temperature was increased to 1480 °C and the holding time increased from 30 to 60 s, the spalling area of the basin and back region of the guide vane did not increase significantly, but a new delamination phenomenon appeared on the upper surface of the guide vane near the trailing edge.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.B. High Temperature Mechanical Behavior of Ceramic-Matrix Composites; Wiley-VCH: Weinheim, Germany, 2021. [Google Scholar]
- Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 2004, 64, 155–170. [Google Scholar] [CrossRef]
- Li, L.B. Damage, Fracture and Fatigue of Ceramic-Matrix Composites; Springer Nature: Singapore, 2018. [Google Scholar]
- Li, L.B. Thermomechanical Fatigue of Ceramic-Matrix Composites; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Li, L.B. Durability of Ceramic-Matrix Composites; Woodhead Publishing: Oxford, UK, 2020. [Google Scholar]
- Wang, Y.R.; Chou, T.-W. Thermal shock resistance of laminated ceramic matrix composites. J. Mater. Sci. 1991, 26, 2961. [Google Scholar] [CrossRef]
- Kagawa, Y.; Kurosawa, N.; Kishi, T. Thermal shock resistance of SiC fibre-reinforced borosilicate glass and lithium aluminosilicate matrix composites. J. Mater. Sci. 1993, 28, 735. [Google Scholar] [CrossRef]
- Bhatt, R.T.; Palczer, A.R. Effects of thermal cycling on thermal expansion and mechanical properties of SiC fiber-reinforced silicon nitride matrix composites. J. Mater. Sci. 1997, 32, 103. [Google Scholar] [CrossRef]
- Chawla, K.K.; Chawla, N. Thermal Shock Behavior of Ceramic Matrix Composites. In Encyclopedia of Thermal Stresses; Hetnarski, R.B., Ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Kastritseas, C.; Smith, P.A.; Yeomans, J.A. Thermal shock fracture in unidirectional fiber-reinforced ceramic-matrix composites. Compos. Sci. Technol. 2005, 65, 1880–1890. [Google Scholar] [CrossRef]
- Wang, H.Y.; Singh, R.N.; Lowden, R.A. Thermal shock behavior of two-dimensional woven fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 1996, 79, 1783–1792. [Google Scholar] [CrossRef]
- Udayakumar, A.; Stalin, M.; Abhayalakshmi, M.B.; Hariharan, R.; Balasubramanian, M. Effect of thermal cycling of SiCf/SiC composites on their mechanical properties. J. Nucl. Mater. 2013, 442 (Suppl. S1), 384–389. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhao, M.M.; Liu, Y.S.; Wang, B.; Wang, X.W.; Qiao, S.R. Tensile strength degradation of a 2.5D-C/SiC composite under thermal cycles in air. J. Eur. Ceram. Soc. 2016, 36, 3011–3019. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.M.; Liu, H. Effects of thermal aging on the cyclic thermal shock behavior of oxide/oxide ceramic matrix composites. Mater. Sci. Eng. A 2020, 769, 138494. [Google Scholar] [CrossRef]
- Absi, J.; Glandus, J.C. Improved method for severe thermal shocks testing of ceramics by water quenching. J. Eur. Ceram. Soc. 2004, 24, 2835–2838. [Google Scholar] [CrossRef]
- Jiao, C.R.; Zhao, C.L.; Sun, S.J.; Gao, Y.; Yang, J.H.; Jiang, K.H.; He, Y.H.; Jiao, J. Study on the thermal shock property of turbine guide blade of SiC/SiC composites. J. Ceram. 2021, 42, 301–307. [Google Scholar]
- Boccaccini, A.R. Predicting the thermal shock resistance of fiber reinforced brittle matrix composites. Scr. Mater. 1998, 38, 1211–1217. [Google Scholar] [CrossRef]
- Li, L.B. Damage and fracture of fiber-reinforced ceramic-matrix composites under thermal fatigue loading in oxidizing atmosphere. J. Ceram. Soc. Jpn. 2019, 127, 67–80. [Google Scholar]
- Li, L.B. Effect of interface damage on tensile behavior of fiber-reinforced ceramic-matrix composites after thermal fatigue loading. Compos. Interfaces 2020, 27, 663–685. [Google Scholar]
- Yang, Z.M.; Liu, H.; Yang, J.J. Damage constitutive model for thermal shocked-ceramic matrix composites. Chin. J. Theor. Appl. Mech. 2019, 51, 1797–1809. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Guo, X.; Xu, Y.; Li, L.; Zhu, W.; Zeng, Y.; Li, J.; Luo, X.; Hu, X. Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes. Materials 2021, 14, 6104. https://doi.org/10.3390/ma14206104
Liu X, Guo X, Xu Y, Li L, Zhu W, Zeng Y, Li J, Luo X, Hu X. Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes. Materials. 2021; 14(20):6104. https://doi.org/10.3390/ma14206104
Chicago/Turabian StyleLiu, Xiaochong, Xiaojun Guo, Youliang Xu, Longbiao Li, Wang Zhu, Yuqi Zeng, Jian Li, Xiao Luo, and Xiaoan Hu. 2021. "Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes" Materials 14, no. 20: 6104. https://doi.org/10.3390/ma14206104
APA StyleLiu, X., Guo, X., Xu, Y., Li, L., Zhu, W., Zeng, Y., Li, J., Luo, X., & Hu, X. (2021). Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes. Materials, 14(20), 6104. https://doi.org/10.3390/ma14206104