Characterization and Microstructural Evolution of Continuous BN Ceramic Fibers Containing Amorphous Silicon Nitride
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of Composite Polymer
2.3. Preparation of Composite Fibers
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Zhang, J.; Tang, Y.; Kong, J.; Liu, T.; Gu, J. Polymer matrix wave-transparent composites: A review. J. Mater. Sci. Technol. 2021, 75, 225–251. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Z.; Tang, Y.; Zhang, J.; Kong, J.; Gu, J. Facile functionalization strategy of PBO fibres for synchronous improving the mechanical and wave-transparent properties of the PBO fibres/cyanate ester laminated composites. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106622. [Google Scholar] [CrossRef]
- Li, B.; Liu, K.; Zhang, C.; Wang, S. Fabrication and properties of borazine derived boron nitride bonded porous silicon aluminum oxynitride wave-transparent composite. J. Eur. Ceram. Soc. 2014, 34, 3591–3595. [Google Scholar] [CrossRef]
- Yang, X.; Li, B.; Li, D.; Shao, C.; Zhang, C. High-temperature properties and interface evolution of silicon nitride fiber reinforced silica matrix wave-transparent composite materials. J. Eur. Ceram. Soc. 2019, 39, 240–248. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Li, B.; Cao, F.; Wang, S.; Li, J. Preparation and properties of unidirectional boron nitride fibre reinforced boron nitride matrix composites via precursor infiltration and pyrolysis route. J. Mater. Sci. Eng. A 2011, 528, 8169–8173. [Google Scholar] [CrossRef]
- Toutois, P.; Miele, P.; Jacques, S.; Cornu, D.; Bernard, S. Structural and mechanical behavior of boron nitride fibers derived from poly[(methylamino)borazine] precursors: Optimization of the curing and pyrolysis procedures. J. Am. Ceram. Soc. 2006, 89, 42–49. [Google Scholar] [CrossRef]
- Bernard, S.; Salameh, C.; Miele, P. Boron nitride ceramics from molecular precursors: Synthesis, properties and applications. Dalton Trans. 2016, 45, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, S.; Miele, P. Polymer-derived boron nitride: A review on the chemistry, shaping and ceramic conversion of borazine derivatives. Materials 2014, 7, 7436–7459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Luo, F.; Zhu, D.; Zhou, W. Influence of Phase Formation on Dielectric Properties of Si3N4 Ceramics. J. Am. Ceram. Soc. 2007, 90, 1950–1952. [Google Scholar] [CrossRef]
- Bernard, S.; Miele, P. Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors. Mater. Today 2014, 17, 443–450. [Google Scholar] [CrossRef]
- Miele, P.; Bernard, S.; Cornu, D.; Toury, B. Recent developments in polymer-derived ceramic fibers (PDCFs): Preparation, properties and applications—A review. Soft Mater. 2007, 4, 249–286. [Google Scholar] [CrossRef]
- Mou, S.; Liu, Y.; Han, K.; Yu, M. Synthesis and characterization of amorphous SiBNC ceramic fibers. Ceram. Int. 2015, 41, 11550–11554. [Google Scholar] [CrossRef]
- Houska, J. Maximum Achievable N Content in Atom-by-Atom Growth of Amorphous Si-B-C-N Materials. Materials 2021, 14, 5744. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wen, H.; Sun, J.; Wang, W.; Fan, Y.; Jia, J.; Chen, W. Tribological Properties of Si3N4-hBN Composite Ceramics Bearing on GCr15 under Seawater Lubrication. Materials 2020, 13, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Wang, Y.; Song, Y.; Deng, C. Novel processable precursor for BN by the polymer-derived ceramics route. Ceram. Int. 2011, 37, 3005–3009. [Google Scholar] [CrossRef]
- Al-Ghalith, J.; Dasmahapatra, A.; Kroll, P.; Meletis, E.; Dumitricǎ, T. Compositional and Structural Atomistic Study of Amorphous Si-B-N Networks of Interest for High-Performance Coatings. J. Phys. Chem. C 2016, 120, 24346–24353. [Google Scholar] [CrossRef]
- Viard, A.; Fonblanc, D.; Schmidt, M.; Lale, A.; Salameh, C.; Soleilhavoup, A.; Wynn, M.; Champagne, P.; Cerneaux, S.; Babonneau, F.; et al. Molecular chemistry and engineering of boron-modified polyorganosilazanes as new processable and functional SiBCN precursors. Chem. Eur. J. 2017, 23, 9076–9090. [Google Scholar] [CrossRef] [PubMed]
- Viard, A.; Fonblanc, D.; Lopez-Ferber, D.; Schmidt, M.; Lale, A.; Durif, C.; Balestrat, M.; Rossignol, F.; Weinmann, M.; Riedel, R.; et al. Polymer derived Si-B-C-N ceramics: 30 years of research. Adv. Eng. Mater. 2018, 20, 1800360. [Google Scholar] [CrossRef]
- Toury, B.; Miele, P.; Cornu, D.; Vincent, H.; Bouix, J. Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazine. Adv. Funct. Mater. 2002, 12, 228–234. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Soraru, G. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, J.; Li, X.; Xie, Z.; Wang, H.; Li, W.; Wang, X. Polymer-Derived SiBN Fiber for High-Temperature Structural/Functional Applications. Chem.—Eur. J. 2010, 16, 6458–6462. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, S.; Cui, Y.; Chang, X.; Zhang, C.; Huang, X.; Han, K.; Yu, M. Fabrication and properties of precursor-derived SiBN ternary ceramic fibers. Mater. Des. 2017, 128, 150–156. [Google Scholar] [CrossRef]
- Peng, Y.; Han, K.; Zhao, X.; Yu, M. Large-scale preparation of SiBN ceramic fibres from a single source precursor. Ceram. Int. 2014, 40, 4797–4804. [Google Scholar] [CrossRef]
- Tan, J.; Ge, M.; Yu, S.; Lu, Z.; Zhang, W. Microstructure and properties of ceramic fibers of h-BN containing amorphous Si3N4. Materials 2019, 12, 3812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Wang, C.; Ai, T.; Wu, K.; Zhao, F.; Gu, H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2009, 40, 830–836. [Google Scholar] [CrossRef]
- Yajima, S.; Hasegawa, Y.; Hayashi, J.; Iimura, M. Synthesis of continuous silicon carbide fibre with high tensile strength and high Young’s modulus. J. Mater. Sci. 1978, 13, 2569–2576. [Google Scholar]
- Chen, M.; Ge, M.; Zhang, W. Preparation and properties of hollow BN fibers derived from polymeric precursors. J. Eur. Ceram. Soc. 2012, 32, 3521–3529. [Google Scholar] [CrossRef]
- Yang, H.; Fang, H.; Yu, H.; Chen, Y.; Wang, L.; Jiang, W.; Wu, Y.; Li, J. Low temperature self-densification of high strength bulk hexagonal boron nitride. Nat. Commun. 2019, 10, 854. [Google Scholar] [CrossRef] [Green Version]
- Bernard, S.; Chassagneux, F.; Berthet, M.-P.; Vincent, H.; Bouix, J. Structural and mechanical properties of a high-performance BN fibre. J. Eur. Ceram. Soc. 2002, 22, 2047–2059. [Google Scholar] [CrossRef]
- Román, R.; Hernández, M.; Ibarra, A.; Vila, R.; Mollá, J.; Martín, P.; González, M. The effect of carbon additives on the dielectric behaviour of alumina ceramics. J. Acta Mater. 2006, 54, 2777–2782. [Google Scholar] [CrossRef]
Materials | Precursor Composition (wt%) | Ceramics Composition (wt%) | ||
---|---|---|---|---|
PBN | PCS | BN | Si3N4 | |
P0 | 100 | 0 | 100 | 0 |
P1 | 97.2 | 2.8 | 95 | 5 |
P2 | 91.1 | 8.9 | 85 | 15 |
P3 | 84.4 | 15.6 | 75 | 25 |
P4 | 77.0 | 23.0 | 65 | 35 |
P5 | 64.3 | 35.7 | 50 | 50 |
P6 | 37.5 | 62.5 | 25 | 75 |
P7 | 0 | 100 | 0 | 100 |
Elemental Content (wt%) | Si | B | N | C |
---|---|---|---|---|
P0-C | 0 | 43.7 | 56.1 | 0.2 |
P1-C | 3.4 | 41.3 | 55.2 | 0.1 |
P2-C | 8.7 | 36.9 | 54.2 | 0.2 |
P3-C | 15.6 | 32.6 | 51.7 | 0.1 |
P4-C | 19.7 | 29.3 | 50.8 | 0.2 |
P5-C | 29.5 | 21.7 | 48.7 | 0.1 |
P6-C | 43.2 | 10.4 | 44.3 | 0.3 |
P7-C | 60.1 | 0 | 39.8 | 0.1 |
Elemental Content (wt%) | Si | B | N | C |
---|---|---|---|---|
P1-F | 3.2 | 41.3 | 55.3 | 0.2 |
P2-F | 8.2 | 37.2 | 54.5 | 0.1 |
P3-F | 14.6 | 33.1 | 52.3 | 0.1 |
Material | Tensile Strength (MPa) | Young’s Modulus (GPa) | Weibull Modulus | Dielectric Constant | Loss Tangent |
---|---|---|---|---|---|
P1-F | 365 | 35 | 4.65 | 3.02 | 0.0023 |
P2-F | 832 | 93 | 4.53 | 3.21 | 0.0031 |
P3-F | 1360 | 117 | 5.17 | 3.34 | 0.0047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ge, M.; Yu, S.; Zhang, H.; Huang, C.; Kong, W.; Wang, Z.; Zhang, W. Characterization and Microstructural Evolution of Continuous BN Ceramic Fibers Containing Amorphous Silicon Nitride. Materials 2021, 14, 6194. https://doi.org/10.3390/ma14206194
Li Y, Ge M, Yu S, Zhang H, Huang C, Kong W, Wang Z, Zhang W. Characterization and Microstructural Evolution of Continuous BN Ceramic Fibers Containing Amorphous Silicon Nitride. Materials. 2021; 14(20):6194. https://doi.org/10.3390/ma14206194
Chicago/Turabian StyleLi, Yang, Min Ge, Shouquan Yu, Huifeng Zhang, Chuanbing Huang, Weijia Kong, Zhiguang Wang, and Weigang Zhang. 2021. "Characterization and Microstructural Evolution of Continuous BN Ceramic Fibers Containing Amorphous Silicon Nitride" Materials 14, no. 20: 6194. https://doi.org/10.3390/ma14206194
APA StyleLi, Y., Ge, M., Yu, S., Zhang, H., Huang, C., Kong, W., Wang, Z., & Zhang, W. (2021). Characterization and Microstructural Evolution of Continuous BN Ceramic Fibers Containing Amorphous Silicon Nitride. Materials, 14(20), 6194. https://doi.org/10.3390/ma14206194